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In this part . . .
You begin calculating the indefinite integral as an 

anti-derivative — that is, as the inverse of a deriva-
tive. In practice, this is easier for some functions than
others. So, I show you four important tricks — variable
substitution, integration by parts, trig substitution, and
integrating with partial fractions — for turning a function
you don’t know how to integrate into one that you do.
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Chapter 4

Instant Integration: 
Just Add Water (And C)

In This Chapter
� Calculating simple integrals as anti-derivatives

� Using 17 integral formulas and 3 integration rules

� Integrating more difficult functions by using more than one integration tool

� Clarifying the difference between integrative and nonintegrable functions

F irst the good news: Because integration is the inverse of differentiation,
you already know how to evaluate a lot of basic integrals.

Now the bad news: In practice, integration is often a lot trickier than differen-
tiation. I’m telling you this upfront because a) it’s true; b) I believe in honesty;
and c) you should prepare yourself before your first exam. (Buying and read-
ing this book, by the way, are great first steps!)

In this chapter — and also in Chapters 5 through 8 — I focus exclusively on
one question: How do you integrate every single function on the planet?
Okay, I’m exaggerating, but not by much. I give you a manageable set of inte-
gration techniques that you can do with a pencil and paper, and if you know
when and how to apply them, you’ll be able to integrate everything but the
kitchen sink.

First, I show you how to start integrating by thinking about integration as
anti-differentiation — that is, as the inverse of differentiation. I give you a not-
too-long list of basic integrals, which mirrors the list of basic derivatives from
Chapter 2. I also give you a few rules for breaking down functions into man-
ageable chunks that are easier to integrate.

After that, I show you a few techniques for tweaking functions to make them
look like the functions you already know how to integrate. By the end of this
chapter, you have the tools to integrate dozens of functions quickly and easily.
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Evaluating Basic Integrals
In Calculus I (which I cover in Chapter 2), you find that a few algorithms —
such as the Product Rule, Quotient Rule, and Chain Rule — give you the tools
to differentiate just about every function your professor could possibly throw
at you. In Calculus II, students often greet the news that “there’s no Chain
Rule for integration” with celebratory cheers. By the middle of the semester,
they usually revise this opinion.

Using the 17 basic anti-derivatives
for integrating
In Chapter 2, I give you a list of 17 derivatives to know, cherish, and above all
memorize (yes, I said memorize). Reading that list may lead you to believe
that I’m one of those harsh über-math dudes who takes pleasure in cruel and
unusual curricular activities.

But math is kind of like the Ghost of Christmas Past — the stuff you thought
was long ago dead and buried comes back to haunt you. And so it is with
derivatives. If you already know them, you’ll find this section easy.

The Fundamental Theorem of Calculus shows that integration is the inverse
of differentiation up to a constant C. This key theorem gives you a way to
begin integrating. In Table 4-1, I show you how to integrate a variety of
common functions by identifying them as the derivatives of functions you
already know.

Table 4-1 The 17 Basic Integrals (Anti-Derivatives)
Derivative Integral (Anti-Derivative)

dx
d n = 0 dx C0 =#

dx
d x = 1 dx x C1 = +#

dx
d ex = ex Ce ex x= +#

dx
d ln x = x

1 lnx dx x C1 = +#

dx
d nx = nx ln n lnn dx n

n Cx
x

= +#

dx
d sin x = cos x cos sinx dx x C= +#
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Derivative Integral (Anti-Derivative)

dx
d cos x = –sin x sin cosx dx x C= - +#

dx
d tan x = sec2 x sec tanx dx x C2 = +#

dx
d cot x = –csc2 x csc cotx dx x C2 = - +#

dx
d sec x = sec x tan x sec tan secx x dx x C= +#

dx
d csc x = –csc x cot x csc cot cscx x dx x C= - +#

arcsindx
d x

x1
1

2
=

-
arcsin

x
dx x C

1
1

2-
= +#

arccosdx
d x

x1
1

2
=

-

- arccos
x

dx x C
1

1
2

-
-

= +#

dx
d arctan x = 

x1
1

2+
arctan

x
dx x C

1
1

2+
= +#

dx
d arccot x = 

x1
1

2-
+

cotx dx x C1
1 arc-
+

= +#

secdx
d x

x x 1
1arc

2
=

-
sec

x x
dx x C

1
1 arc

2 -
= +#

cscdx
d x

x x 1
1arc

2
=-

-
csc

x x
x C

1
1 arc

2
-

-
= +#

As I discuss in Chapter 3, you need to add the constant of integration C
because constants differentiate to 0. For example:

dx
d

sin x = cos x

dx
d

sin x + 1 = cos x

dx
d

sin x – 100 = cos x

So when you integrate by using anti-differentiation, you need to account for
the potential presence of this constant:

cos sinx dx x C= +#

Three important integration rules
After you know how to integrate by using the 17 basic anti-derivatives in
Table 4-1, you can expand your repertoire with three additional integration
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rules: the Sum Rule, the Constant Multiple Rule, and the Power Rule. These
three rules mirror those that you know from differentiation.

The Sum Rule for integration
The Sum Rule for integration tells you that integrating long expressions term
by term is okay. Here it is formally:

f x g x dx f x dx g x dx+ = + ### ^ ^ ^ ^h h h h8 B

For example:

cos cosx x x dx x dx x dx x dx1 12 2+ - = + - #### c m

Note that the Sum Rule also applies to expressions of more than two terms.
It also applies regardless of whether the term is positive or negative. (Some
books call this variation the Difference Rule, but you get the idea.) Splitting
this integral into three parts allows you to integrate each separately by using
a different anti-differentiation rule:

= sin x + 3
1 x3 – ln x + C

Notice that I add only one C at the end. Technically speaking, you should add
one variable of integration (say, C1, C2, and C3) for each integral that you eval-
uate. But, at the end, you can still declare the variable C = C1 + C2 + C3 to con-
solidate all these variables. In most cases when you use the Sum Rule, you
can skip this step and just tack a C onto the end of the answer.

The Constant Multiple Rule for integration
The Constant Multiple Rule tells you that you can move a constant outside of
a derivative before you integrate. Here it is expressed in symbols:

nf x dx n f x dx= ## ^ ^h h

For example:

tan sec tan secx x dx x x dx3 3= ##

As you can see, this rule mirrors the Constant Multiple Rule for differentia-
tion. With the constant out of the way, integrating is now easy using an anti-
differentiation rule:

= 3 sec x + C
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The Power Rule for integration
The Power Rule for integration allows you to integrate any real power of x
(except –1). Here’s the Power Rule expressed formally:

x dx n x C1
1n n 1=
+

++#

For example:

x dx x C2
1 2= +#

x dx x C3
12 3= +#

x dx x C101
1100 101= +#

The Power Rule works fine for negative powers of x, which are powers of x in
the denominator. For example:

x
dx1

2#

x dx2= -#

= –x–1 + C

= – x
1 + C

The Power Rule also works for rational powers of x, which are roots of x. For
example:

x dx3#

x dx2
3

= #

= x5
2

2
5

+ C

x C5
2 5= +

The only real-number power that the Power Rule doesn’t work for is –1.
Fortunately, you have an anti-differentiation rule to handle this case:

x dx1#

x dx1= -#

= ln |x| + C
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What happened to the other rules?
Integration contains formulas that mirror the Sum Rule, the Constant Multiple
Rule, and the Power Rule for differentiation. But it lacks formulas that look
like the Product Rule, Quotient Rule, and Chain Rule. This fact may sound like
good news, but the lack of formulas makes integration a lot trickier in prac-
tice than differentiation is.

In fact, Chapters 5 through 8 focus on a bunch of methods that mathemati-
cians have devised for getting around this difficulty. Chapter 5 focuses on
variable substitution, which is a limited form of the Chain Rule. And in
Chapter 6, I show you integration by parts, which is an adaptation of the
Product Rule.

Evaluating More Difficult Integrals
The anti-differentiation rules for integrating, which I explain earlier in this
chapter, greatly limit how many integrals you can compute easily. In many
cases, however, you can tweak a function to make it easier to integrate.

In this section, I show you how to integrate certain fractions and roots
by using the Power Rule. I also show you how to use the trig identities in
Chapter 2 to stretch your capacity to integrate trig functions.

Integrating polynomials
You can integrate any polynomial in three steps by using the rules from this
section:

1. Use the Sum Rule to break the polynomial into its terms and integrate
each of these separately.

2. Use the Constant Multiple Rule to move the coefficient of each term
outside its respective integral.

3. Use the Power Rule to evaluate each integral. (You only need to add a
single C to the end of the resulting expression.)

For example, suppose that you want to evaluate the following integral:

x x x dx10 3 2 56 3- + -# _ i
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1. Break the expression into four separate integrals:

x dx x dx x dx dx10 3 2 56 3= - + -# # # #

2. Move each of the four coefficients outside its respective integral:

x dx x dx x dx dx10 3 2 56 3= - + -# # ##

3. Integrate each term separately using the Power Rule:

= 7
10 x7 – 4

3 x4 + x2 – 5x + C

You can integrate any polynomial by using this method. Many integration
methods I introduce later in this book rely on this fact. So, practice integrat-
ing polynomials until you feel so comfortable that you could do it in your
sleep.

Integrating rational expressions
In many cases, you can untangle hairy rational expressions and integrate
them by using the anti-differentiation rules plus the other three rules in this
chapter.

For example, here’s an integral that looks like it may be difficult:

x

x x
dx

5 32 2
+ -

#
_ ^i h

You can split the function into several fractions, but without the Product Rule
or Quotient Rule, you’re then stuck. Instead, expand the numerator and put
the denominator in exponential form:

x
x x x x dx6 14 30 45

2
1

4 3 2

= - + - +#

Next, split the expression into five terms:

x x x x x dx6 14 30 452
7

2
5

2
3

2
1

2
1

= - + - + -# a k

Then, use the Sum Rule to separate the integral into five separate integrals
and the Constant Multiple Rule to move the coefficient outside the integral in
each case:

x dx x dx x dx x dx x dx6 14 30 452
7

2
5

2
3

2
1

2
1

= - + - + -# # # # #

Now, you can integrate each term separately using the Power Rule:

= x x x x x C9
2

7
12

5
28 20 902

9
2
7

2
5

2
3

2
1

- + - + +
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Using identities to integrate trig functions
At first glance, some products or quotients of trig functions may seem impos-
sible to integrate by using the formulas I give you earlier in this chapter. But,
you’ll be surprised how much headway you can often make when you inte-
grate an unfamiliar trig function by first tweaking it using the Basic Five trig
identities that I list in Chapter 2.

The unseen power of these identities lies in the fact that they allow you to
express any combination of trig functions into a combination of sines and
cosines. Generally speaking, the trick is to simplify an unfamiliar trig function
and turn it into something that you know how to integrate.

When you’re faced with an unfamiliar product or quotient of trig functions,
follow these steps:

1. Use trig identities to turn all factors into sines and cosines.

2. Cancel factors wherever possible.

3. If necessary, use trig identities to eliminate all fractions.

For example:

sin cot secx x x dx2#

In its current form, you can’t integrate this expression by using the rules from
this chapter. So you follow these steps to turn it into an expression you can
integrate:

1. Use the identities cot x = x
x

sin
cos and sec x = x

1
cos :

sin sin
cos

cosx x
x

x dx12= $ $#

2. Cancel both sin x and cos x in the numerator and denominator:

sinx dx= #

In this example, even without Step 3, you have a function that you can 
integrate.

= –cos x + C

Here’s another example:

tan sec cscx x x dx#

112 Part II: Indefinite Integrals 

09_225226-ch04.qxd  5/1/08  6:05 PM  Page 112



Again, this integral looks like a dead end before you apply the five basic trig
identities to it:

1. Turn all three factors into sines and cosines:

cos
sin

cos sinx
x

x x dx1 1= $ $#

2. Cancel sin x in the numerator and denominator:

cos x
dx1

2= #

3. Use the identity cos x = x
1

sec to eliminate the fraction:

sec x dx2= #

= tan x + C

Again, you turn an unfamiliar function into one of the ten trig functions that
you know how to integrate.

I show you lots more tricks for integrating trig functions in Chapter 7.

Understanding Integrability
By now, you’ve probably figured out that, in practice, integration is usually
harder than differentiation. The lack of any set rules for integrating products,
quotients, and compositions of functions makes integration something of an
art rather than a science.

So, you may think that a large number of functions are differentiable, with a
smaller subset of these being integrable. It turns out that this conclusion is
false. In fact, the set of integrable functions is larger, with a smaller subset of
these being differentiable. To understand this fact, you need to be clear on
what the words integrable and differentiable really mean.

In this section, I shine some light on two common mistakes that students
make when trying to understand what integrability is all about. After that,
I discuss what it means for a function to be integrable, and I show you why
many functions that are integrable aren’t differentiable.
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Understanding two red herrings 
of integrability
In trying to understand what makes a function integrable, you first need to
understand two related issues: difficulties in computing integrals and represent-
ing integrals as functions. These issues are valid, but they’re red herrings —
that is, they don’t really affect whether a function is integrable.

Computing integrals
For many input functions, integrals are more difficult to compute than deriva-
tives are. For example, suppose that you want to differentiate and integrate
the following function:

y = 3x5e2x

You can differentiate this function easily by using the Product Rule (I take an
additional step to simplify the answer):

dx
dy

dx
d x dx

d x3 e ex x5 2 2 5= +_ _i i; E

= 3(5x4e2x + 2e2xx5)

= 3x4e2x(2x + 5)

Because no such rule exists for integration, in this example you’re forced to
seek another method. (You find this method in Chapter 6, where I discuss
integration by parts.) 

Finding solutions to integrals can be tricky business. In comparison, finding
derivatives is comparatively simple — you learned most of what you need to
know about it in Calculus I.

Representing integrals as functions
Beyond difficulties in computation, the integrals of certain functions simply
can’t be represented by using the functions that you’re used to.

More precisely, some integrals can’t be represented as elementary functions —
that is, as combinations of the functions you know from Pre-Calculus. (See
Chapter 14 for a more in-depth look at elementary functions.)

For example, take the following function:

y e x 2

=
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You can find the derivative of the function easily by using the Chain Rule:

dx
d e x 2

dx
d xe x 22

= c m

x2e x 2

= ^ h

x2 e x 2

=

However, the integral of the same function, e x 2

, can’t be expressed as a 
function — at least, not any function that you’re used to.

Instead, you can express this integral either exactly — as an infinite series —
or approximately — as a function that approximates the integral to a given
level of precision. (See Part IV for more on infinite series.) Alternatively,
you can just leave it as an integral, which also expresses it just fine for some
purposes.

Understanding what integrable
really means
When mathematicians discuss whether a function is integrable, they aren’t
talking about the difficulty of computing that integral — or even whether a
method has been discovered. Each year, mathematicians find new ways to
integrate classes of functions. However, this fact doesn’t mean that previ-
ously nonintegrable functions are now integrable.

Similarly, a function’s integrability also doesn’t hinge upon whether its inte-
gral can be easily represented as another function, without resorting to infi-
nite series.

In fact, when mathematicians say that a function is integrable, they mean
only that the integral is well defined — that is, that it makes mathematical
sense.

In practical terms, integrability hinges on continuity: If a function is continu-
ous on a given interval, it’s integrable on that interval. Additionally, if a func-
tion has only a finite number of discontinuities on an interval, it’s also
integrable on that interval.

You probably remember from Calculus I that many functions — such as those
with discontinuities, sharp turns, and vertical slopes — are nondifferentiable.
Discontinuous functions are also nonintegrable. However, functions with
sharp turns and vertical slopes are integrable.
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For example, the function y = |x| contains a sharp point at x = 0, so the func-
tion is nondifferentiable at this point. However, the same function is integrable
for all values of x. This is just one of infinitely many examples of a function
that’s integrable but not differentiable in the entire set of real numbers.

So, surprisingly, the set of differentiable functions is actually a subset of the
set of integrable functions. In practice, however, computing the integral of
most functions is more difficult than computing the derivative.

116 Part II: Indefinite Integrals 

09_225226-ch04.qxd  5/1/08  6:08 PM  Page 116



Chapter 5

Making a Fast Switch:
Variable Substitution

In This Chapter
� Understanding how variable substitution works

� Recognizing when variable substitution can help you

� Knowing a shortcut for using substitution with definite integrals

Unlike differentiation, integration doesn’t have a Chain Rule. This fact
makes integrating compositions of functions (functions within functions)

a little bit tricky. The most useful trick for integrating certain common com-
positions of functions uses variable substitution.

With variable substitution, you set a variable (usually u) equal to part of the
function that you’re trying to integrate. The result is a simplified function
that you can integrate by using the anti-differentiation formulas and the three
basic integration rules (Sum Rule, Constant Multiple Rule, and Power Rule —
all discussed in Chapter 4).

In this chapter, I show you how to use variable substitution. Then I show you
how to identify a few common situations where variable substitution is help-
ful. After you get comfortable with the process, I give you a quick way to inte-
grate by just looking at the problem and writing down the answer. Finally, I
show you how to skip a step when using variable substitution to evaluate def-
inite integrals.
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Knowing How to Use Variable
Substitution

The anti-differentiation formulas plus the Sum Rule, Constant Multiple Rule,
and Power Rule (all discussed in Chapter 4) allow you to integrate a variety
of common functions. But as functions begin to get a little bit more complex,
these methods become insufficient. For example, these methods don’t work
on the following:

sin x dx2#

To evaluate this integral, you need some stronger medicine. The sticking
point here is the presence of the constant 2 inside the sine function. You have
an anti-differentiation rule for integrating the sine of a variable, but how do
you integrate the sine of a variable times a constant?

The answer is variable substitution, a five-step process that allows you to
integrate where no integral has gone before:

1. Declare a variable u and set it equal to an algebraic expression that
appears in the integral, and then substitute u for this expression in
the integral.

2. Differentiate u to find dx
du , and then isolate all x variables on one side

of the equal sign.

3. Make another substitution to change dx and all other occurrences of x
in the integral to an expression that includes du.

4. Integrate by using u as your new variable of integration.

5. Express this answer in terms of x.

I don’t expect these steps to make much sense until you see how they work in
action. In the rest of this section, I show you how to use variable substitution
to solve problems that you wouldn’t be able to integrate otherwise.

Finding the integral of nested functions
Suppose that you want to integrate the following:

sin x dx2#
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The difficulty here lies in the fact that this function is the composition of two
functions: the function 2x nested inside a sine function. If you were differenti-
ating, you could use the Chain Rule. Unfortunately, no Chain Rule exists for
integration.

Fortunately, this function is a good candidate for variable substitution. Follow
the five steps I give you in the previous section:

1. Declare a new variable u as follows and substitute it into the integral:

Let u = 2x

Now, substitute u for 2x as follows:

sin sinx dx u dx2 = ##

This may look like the answer to all your troubles, but you have one
more problem to resolve. As it stands, the symbol dx tells you that vari-
able of integration is still x.

To integrate properly, you need to find a way to change dx to an expres-
sion containing du. That’s what Steps 2 and 3 are about.

2. Differentiate the function u = 2x and isolate the x terms on one side of
the equal sign:

dx
du = 2

Now, treat the symbol dx
du as if it’s a fraction, and isolate the x terms on 

one side of the equal sign. I do this in two steps:

du = 2 dx

2
1 du = dx

3. Substitute 2
1 du for dx into the integral:

sinu du2
1# c m

You can treat the 2
1 just like any coefficient and use the Constant 

Multiple Rule to bring it outside the integral:

sinu du2
1= #

4. At this point, you have an expression that you know how to evaluate:

= 2
1- cos u + C
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5. Now that the integration is done, the last step is to substitute 2x back
in for u:

2
1- cos 2x + C

You can check this solution by differentiating using the Chain Rule:

dx
d

( 2
1- cos 2x + C)

= cosdx
d x dx

d C2
1 2- +c m

= 2
1- (–sin 2x) (2) + 0

= sin 2x

Finding the integral of a product
Imagine that you’re faced with this integral:

sin cosx x dx3#

The problem in this case is that the function that you’re trying to integrate is
the product of two functions — sin3 x and cos x. This would be simple to dif-
ferentiate with the Product Rule, but integration doesn’t have a Product Rule.
Again, variable substitution comes to the rescue:

1. Declare a variable as follows and substitute it into the integral:

Let u = sin x

You may ask how I know to declare u equal to sin x (rather than, say, sin3 x
or cos x). I answer this question later in the chapter. For now, just follow
along and get the mechanics of variable substitution.

You can substitute this variable into the expression that you want to
integrate as follows:

sin cos cosx x dx u x dx3 3= ##

Notice that the expression cos x dx still remains and needs to be
expressed in terms of u.

2. Differentiate the function u = sin x and isolate the x variables on one
side of the equal sign:

dx
du = cos x

Isolate the x variables on one side of the equal sign:

du = cos x dx
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3. Substitute du for cos x dx in the integral:

u du3#

4. Now you have an expression that you can integrate:

= 4
1 u4 + C

5. Substitute sin x for u:

= 4
1 sin4 x + C

And again, you can check this answer by differentiating with the Chain Rule:

dx
d ( 4

1 sin4 x + C)

= dx
d

4
1 sin4 x + dx

d C

= 4
1 (4 sin3 x) (cos x) + 0

= sin3 x cos x

This derivative matches the original function, so the integration is correct.

Integrating a function multiplied 
by a set of nested functions
Suppose that you want to integrate the following:

x x dx3 72 +#

This time, you’re trying to integrate the product of a function (x) and a com-
position of functions (the function 3x2 + 7 nested inside a square root func-
tion). If you were differentiating, you could use a combination of the Product
Rule and the Chain Rule, but these options aren’t available for integration.
Here’s how you integrate, step by step, by using variable substitution:

1. Declare a variable u as follows and substitute it into the integral:

Let u = 3x2 + 7

Here, you may ask how I know what value to assign to u. Here’s the short
answer: u is the inner function, as you would identify if you were using
the Chain Rule. (See Chapter 2 for a review of the Chain Rule.) I explain
this more fully later in “Recognizing When to Use Substitution.”

Now, substitute u into the integral:

x x dx x u dx3 72 + = ##
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Make one more small rearrangement to place all the remaining x terms
together:

u x dx= #

This rearrangement makes clear that I still have to find a substitution for
x dx.

2. Now differentiate the function u = 3x2 + 7:

dx
du = 6x

From Step 1, I know that I need to replace x dx in the integral:

du = 6x dx

6
1 du = x dx

3. Substitute du
6 for x dx:

u du6
1= # c m

You can move the fraction 6
1 outside the integral:

u du6
1= #

4. Now you have an integral that you know how to evaluate.

I take an extra step, putting the square root in exponential form, to make
sure that you see how to do this:

u du6
1

2
1

= #

u C6
1

3
2

2
3

= +c m

u C9
1

2
3

= +

5. To finish up, substitute 3x2 + 7 for u:

= x C9
1 3 72 2

3

+ +_ i

As with the first two examples in this chapter, you can always check your
integration by differentiating the result:

dx
d x C9

1 3 72 2
3

+ +_ i< F

dx
d x dx

d C9
1 3 72 2

3

= + +_ i

x x9
1

2
3 3 7 6 02 2

1

= + +c _ ^m i h

x x3 72= +

As if by magic, the derivative brings you back to the function you started with.
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Recognizing When to Use Substitution
In the previous section, I show you the mechanics of variable substitution —
that is, how to perform variable substitution. In this section, I clarify when to
use variable substitution.

You may be able to use variable substitution in three common situations. In
these situations, the expression you want to evaluate is one of the following:

� A composition of functions — that is, a function nested in a function

� A function multiplied by a function

� A function multiplied by a computation of functions

Integrating nested functions
Compositions of functions — that is, one function nested inside another —
are of the form f(g(x)). You can integrate them by substituting u = g(x) when

� You know how to integrate the outer function f.

� The inner function g(x) differentiates to a constant — that is, it’s of the
form ax or ax + b.

Example #1
Here’s an example. Suppose that you want to integrate the function

csc2 (4x + 1) dx

Again, this is a composition of two functions:

� The outer function f is the csc2 function, which you know how to integrate.

� The inner function is g(x) = 4x + 1, which differentiates to the constant 4.

This time the composition is held together by the equality u = 4x + 1. That is,
the two basic functions f(u) = csc2 u and g(x) = 4x + 1 are composed by the
equality u = 4x + 1 to produce the function f(g(x)) = csc2 (4x + 1).

Both criteria are met, so this integral is another prime candidate for substitu-
tion using u = 4x + 1. Here’s how you do it:

1. Declare a variable u and substitute it into the integral:

Let u = 4x + 1

csc cscx dx u dx4 12 2+ = ## ^ h
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2. Differentiate u = 4x + 1 and isolate the x term:

dx
du = 4

du
4 = dx

3. Substitute du
4 for dx in the integral:

csc u du4
12# c m

csc u du4
1 2= #

4. Evaluate the integral:

= 4
1- cot u + C

5. Substitute back 4x + 1 for u:

= 4
1- cot (4x + 1) + C

Example #2
Here’s one more example. Suppose that you want to evaluate the following
integral:

x dx3
1
-

#

Again, this is a composition of two functions:

� The outer function f is a fraction — technically, an exponent of –1 —
which you know how to integrate.

� The inner function is g(x) = x – 3, which differentiates to 1.

Here, the composition is held together by the equality u = x – 3. That is, the 

two basic functions f(u) = u
1 and g(x) = x – 3 are composed by the equality 

u = x – 3 to produce the function f(g(x)) = x 3
1
-

.

The criteria are met, so you can integrate by using the equality u = x – 3:

1. Declare a variable u and substitute it into the integral:

Let u = x – 3

x dx u dx3
1 1
-

=# #

2. Differentiate u = x – 3 and isolate the x term:

dx
du = 1

du = dx
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3. Substitute du for dx in the integral:

u du1#

4. Evaluate the integral:

= ln |u| + C

5. Substitute back x – 3 for u:

= ln |x – 3| + C

Knowing a shortcut for nested functions
After you work through enough examples of variable substitution, you may
begin to notice certain patterns emerging. As you get more comfortable with
the concept, you can use a shortcut to integrate compositions of functions —
that is, nested functions of the form f(g(x)). Technically, you’re using the vari-
able substitution u = g(x), but you can bypass this step and still get the right
answer.

This shortcut works for compositions of functions f(g(x)) for which

� You know how to integrate the outer function f.

� The inner function g(x) is of the form ax or ax + b — that is, it differenti-
ates to a constant.

When these two conditions hold, you can integrate f(g(x)) by using the fol-
lowing three steps:

1. Write down the reciprocal of the coefficient of x.

2. Multiply by the integral of the outer function, copying the inner func-
tion as you would when using the Chain Rule in differentiation.

3. Add C.

Example #1
For example:

cos x dx4#

Notice that this is a function nested within a function, where the following
are true:

� The outer function f is the cosine function, which you know how to 
integrate.

� The inner function is g(x) = 4x, which is of the form ax.
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So, you can integrate this function quickly as follows:

1. Write down the reciprocal of 4 — that is, 4
1 :

4
1

2. Multiply this reciprocal by the integral of the outer function, copying
the inner function:

4
1 sin 4x

3. Add C:

4
1 sin 4x + C

That’s it! You can check this easily by differentiating, using the Chain Rule:

sindx
d x C4

1 4 +c m

= 4
1 cos 4x (4)

= cos 4x

Example #2
Here’s another example:

sec x dx102#

Remember as you begin that sec2 10x dx is a notational shorthand for [sec
(10x)]2. So, the outer function f is the sec2 function and the inner function is
g(x) = 10x. (See Chapter 2 for more on the ins and outs of trig notation.)
Again, the criteria for variable substitution are met:

1. Write down the reciprocal of 10 — that is, 10
1 :

10
1

2. Multiply this reciprocal by the integral of the outer function, copying
the inner function:

10
1 tan 10x

3. Add C:

10
1 tan 10x + C
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Here’s the check:

tandx
d x C10

1 10 +c m

tandx
d x dx

d C10
1 10= +

= 10
1 sec2 10x (10) + 0

= sec2 10x

Example #3
Here’s another example:

x dx7 2
1
+

#

In this case, the outer function is division, which counts as a function, as I
explain earlier in “Recognizing When to Use Substitution.” The inner function
is 7x + 2. Both of these functions meet the criteria, so here’s how to perform
this integration:

1. Write down the reciprocal of the coefficient 7 — that is, 7
1 :

7
1

2. Multiply this reciprocal by the integral of the outer function, copying
the inner function:

7
1 ln |7x + 2|

3. Add C:

7
1 ln |7x + 2| + C

You’re done! As always, you can check your result by differentiating, using
the Chain Rule:

lndx
d x C7

1 7 2+ +c m

x7
1

7 2
1 7=
+

c ^m h

x7 2
1=
+
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Example #4
Here’s one more example:

x dx12 5-#

This time, the outer function f is a square root — that is, an exponent of 2
1 —

and g(x) = 12x – 5, so you can use a quick substitution:

1. Write down the reciprocal of 12 — that is, 12
1 :

12
1

2. Multiply the integral of the outer function, copying down the inner
function:

x12
1

3
2 12 5 2

3

-^ h

x18
1 12 5 2

3

= -^ h

3. Add C:

x C18
1 12 5 2

3

- +^ h

Table 5-1 gives you a variety of integrals in this form. As you look over this
chart, get a sense of the pattern so that you can spot it when you have an
opportunity to integrate quickly.

Table 5-1 Using the Shortcut for Integrating Nested Functions
Integral Evaluation

e dxx5# 5
1 e5x + C

sin x dx7# 7
1- cos 7x + C

sec x dx3
2# 3 tan x

3 + C

tan secx x dx8 8# 8
1 sec 8x + C

e dxx5 2+# 5
1 e5x + 2 + C

cos x dx4-# ^ h sin (x – 4) + C
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Substitution when one part of a function
differentiates to the other part
When g'(x) = f(x), you can use the substitution u = g(x) to integrate the 
following:

� Expressions of the form f(x) · g(x)

� Expressions of the form f(x) · h(g(x)), provided that h is a function that
you already know how to integrate

Don’t worry if you don’t understand all this math-ese. In the following sections,
I show you how to recognize both of these cases and integrate each. As usual,
variable substitution helps to fill the gaps left by the absence of a Product Rule
and a Chain Rule for integration.

Expressions of the form f(x) · g(x)
Some products of functions yield quite well to variable substitution. Look for
expressions of the form f(x) · g(x) where

� You know how to integrate g(x).

� The function f(x) is the derivative of g(x).

For example:

tan secx x dx2#

The main thing to notice here is that the derivative of tan x is sec2 x. This is a
great opportunity to use variable substitution:

1. Declare u and substitute it into the integral:

Let u = tan x

tan sec secx x dx u x dx2 2= ##

2. Differentiate as planned:

dx
du = sec2 x

du = sec2 x dx

3. Perform another substitution:

u du= #
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4. This integration couldn’t be much easier:

= 2
1 u2 + C

5. Substitute back tan x for u:

= 2
1 tan2 x + C

Expressions of the form f(x) · h(g(x))
Here’s a hairy-looking integral that actually responds well to substitution:

x tx

x
dx

5

2 1
2 3

4

-

+
#
_

^

i

h

The key insight here is that the numerator of this fraction is the derivative
of the inner function in the denominator. Watch how this plays out in this 
substitution:

1. Declare u equal to the denominator and make the substitution:

Let u = x2 + x – 5

Here’s the substitution:

u
x dx2 1

3
4= +#

2. Differentiate u:

dx
du = 2x + 1

du = (2x + 1) dx

3. The second part of the substitution now becomes clear:

u
du1

3
4= #

Notice how this substitution hinges on the fact that the numerator is the
derivative of the denominator. (You may think that this is quite a coinci-
dence, but coincidences like these happen all the time on exams!)

4. Integration is now quite straightforward:

I take an extra step to remove the fraction before I integrate.

u du3
4

= -#

= –3u 3
1

- + C

5. Substitute back x2 + x – 5 for u:

= –3(x2 + x – 5) 3
1

-

+ C
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Checking the answer by differentiating with the Chain Rule reveals how this
problem was set up in the first place:

dx
d [–3(x2 + x – 5) 3

1
-

+ C]

= (x2 + x – 5) 3
4

- (2x + 1)

= 
x x

x

5

2 1
2 3

4

+ -

+

_ i

By now, if you’ve worked through the examples in this chapter, you’re proba-
bly seeing opportunities to make variable substitutions. For example:

x x dx13 4 -#

Notice that the derivative of x4 – 1 is x3, off by a constant factor. So here’s the
declaration, followed by the differentiation:

Let u = x4 – 1

dx
du

= 4x3

du
4 = x3 dx

Now you can just do both substitutions at once:

u du4
1$# c m

u du4
1= #

At this point, you can solve the integral simply — I’ll leave this as an exercise
for you!

Similarly, here’s another example:

csc x e dxcot x2#

At first glance, this integral looks just plain horrible. But on further inspec-
tion, notice that the derivative of cot x is –csc2 x, so this looks like another
good candidate:

Let u = cot x

dx
du

= –csc2 x

–du = csc2 x dx
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This results in the following substitution:

due u= -# ^ h

due u=- #

Again, this is another integral that you can solve.

Using Substitution to Evaluate
Definite Integrals

In the first two sections of this chapter, I cover how and when to evaluate
indefinite integrals with variable substitution. All this information also
applies to evaluating definite integrals, but I also have a timesaving trick that
you should know.

When using variable substitution to evaluate a definite integral, you can save
yourself some trouble at the end of the problem. Specifically, you can leave
the solution in terms of u by changing the limits of integration.

For example, suppose that you’re evaluating the following definite integral:

x x dx1
x

x

0

1
2 +

=

=

#

Notice that I give the limits of integration as x = 0 and x = 1. This is just a
notational change to remind you that the limits of integration are values of x.
This fact becomes important later in the problem.

You can evaluate this equation simply by using variable substitution.

If you’re not sure why this substitution works, read the section “Recognizing
When to Use Substitution” earlier in this chapter. Follow Steps 1 through 3 of
variable substitution:

Let u = x2 + 1

dx
du

= 2x
du
2 = x dx

u du2
1

x

x

0

2

=
=

-

#
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If this were an indefinite integral, you’d be ready to integrate. But because
this is a definite integral, you still need to express the limits of integration in
terms of u rather than x. Do this by substituting values 0 and 1 for x in the
substitution equation u = x2 + 1:

u = 12 + 1 = 2

u = 02 + 1 = 1

Now use these values of u as your new limits of integration:

u du2
1

v

v

1

2

=
=

=

#

At this point, you’re ready to integrate:

u2
1

3
2

u

u

2
3

1

2

=
=

=

$

u3
1

v

v

2
3

1

2

=
=

=

Because you changed the limits of integration, you can now find the answer
without switching the variable back to x:

3
1 2 12

3
2
3

= -a k

3
1 8 1= -` j

3
8

3
1= -
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Chapter 6

Integration by Parts
In This Chapter
� Making the connection between the Product Rule and integration by parts

� Knowing how and when integration by parts works

� Integrating by parts by using the DI-agonal method

� Practicing the DI-agonal method on the four most common products of functions

In Calculus I, you find that the Product Rule allows you to find the deriva-
tive of any two functions that are multiplied together. (I review this in

Chapter 2, in case you need a refresher.) But integrating the product of two
functions isn’t quite as simple. Unfortunately, no formula allows you to inte-
grate the product of any two functions. As a result, a variety of techniques
have been developed to handle products of functions on a case-by-case basis.

In this chapter, I show you the most widely applicable technique for integrat-
ing products, called integration by parts. First, I demonstrate how the formula
for integration by parts follows the Product Rule. Then I show you how the
formula works in practice. After that, I give you a list of the products of func-
tions that are likely to yield to this method.

After you understand the principle behind integration by parts, I give you
a method — called the DI-agonal method — for performing this calculation
efficiently and without errors. Then I show you examples of how to use this
method to integrate the four most common products of functions.

Introducing Integration by Parts
Integration by parts is a happy consequence of the Product Rule (discussed
in Chapter 2). In this section, I show you how to tweak the Product Rule to
derive the formula for integration by parts. I show you two versions of this
formula — a complicated version and a simpler one — and then recommend
that you memorize the second. I show you how to use this formula, and then
I give you a heads up as to when integration by parts is likely to work best.
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Reversing the Product Rule
The Product Rule (see Chapter 2) enables you to differentiate the product of
two functions:

dx
d [f(x) · g(x)] = f'(x) · g(x) + g'(x) · f(x)

Through a series of mathematical somersaults, you can turn this equation
into a formula that’s useful for integrating. This derivation doesn’t have any
truly difficult steps, but the notation along the way is mind-deadening, so
don’t worry if you have trouble following it. Knowing how to derive the for-
mula for integration by parts is less important than knowing when and how
to use it, which I focus on in the rest of this chapter.

The first step is simple: Just rearrange the two products on the right side of the
equation:

dx
d [f(x) · g(x)] = f(x) · g'(x) + g(x) · f'(x)

Next, rearrange the terms of the equation:

f(x) · g'(x) = dx
d [f(x) · g(x)] – g(x) · f'(x)

Now, integrate both sides of this equation:

f x g x dx dx
d f x g x g x f x dx= -## l l^ ^ ^ ^ ^ ^h h h h h h8 B' 1

Use the Sum Rule to split the integral on the left in two:

f x g x dx dx
d f x g x dx g x f x dx= -# ##l l^ ^ ^ ^ ^ ^h h h h h h8 B

The first of these two integrals undoes the derivative:

f x g x dx f x g x g x f x dx= - ## l l^ ^ ^ ^ ^ ^h h h h h h

This is the formula for integration by parts. But because it’s so hairy looking,
the following substitution is used to simplify it:

Let u = f(x) Let v = g(x)

du = f'(x) dx dv = g'(x) dx

Here’s the friendlier version of the same formula, which you should 
memorize:

u dv uv v du= - ##
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Knowing how to integrate by parts
The formula for integration by parts gives you the option to break the prod-
uct of two functions down to its factors and integrate it in an altered form.

To integrate by parts:

1. Decompose the entire integral (including dx) into two factors.

2. Let the factor without dx equal u and the factor with dx equal dv.

3. Differentiate u to find du, and integrate dv to find v.

4. Use the formula u dv uv= - v du# # .

5. Evaluate the right side of this equation to solve the integral.

For example, suppose that you want to evaluate this integral:

lnx x dx#

In its current form, you can’t perform this computation, so integrate by parts:

1. Decompose the integral into ln x and x dx.

2. Let u = ln x and dv = x dx.

3. Differentiate ln x to find du and integrate x dx to find v:

Let u = ln x Let dv = x dx

dx
du = x

1 dv x dx=# #

du = x
1 dx v = 2

1 x2

4. Using these values for u, du, v, and dv, you can use the formula for
integration by parts to rewrite the integral as follows:

ln lnx x dx x x x x dx2
1

2
1 12 2= -# #^ c c ch m m m

At this point, algebra is useful to simplify the right side of the equation:

lnx x x dx2
1

2
12= - #

5. Evaluate the integral on the right:

lnx x x C2
1

2
1

2
12 2= - +c m

You can simplify this answer just a bit:

lnx x x C2
1

4
12 2= - +
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Therefore, lnx x dx# . To check this answer, differentiate it by using the 

Product Rule:

lndx
d x x x C2

1
4
12 2- +c m

ln lndx
d x x dx

d x x x2
1

4
1 22 2= + -c cm m= G

lnx x x x x2
1 2 1

2
12= + -$c m= G

Now, simplify this result to show that it’s equivalent to the function you
started with:

ln lnx x x x x x2
1

2
1= + - =

Knowing when to integrate by parts
After you know the basic mechanics of integrating by parts, as I show you in
the previous section, it’s important to recognize when integrating by parts is
useful.

To start off, here are two important cases when integration by parts is defi-
nitely the way to go:

� The logarithmic function ln x

� The first four inverse trig functions (arcsin x, arccos x, arctan x, and
arccot x)

Beyond these cases, integration by parts is useful for integrating the product
of more than one function. For example:

� x ln x

� x arcsec x

� x2 sin x

� ex cos x

Notice that in each case, you can recognize the product of functions because
the variable x appears more than once in the function.
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Whenever you’re faced with integrating the product of functions, consider
variable substitution (which I discuss in Chapter 5) before you think about
integration by parts. For example, x cos (x2) is a job for variable substitution,
not integration by parts. (To see why, flip to Chapter 5.)

When you decide to use integration by parts, your next question is how to
split up the function and assign the variables u and dv. Fortunately, a helpful
mnemonic exists to make this decision: Lovely Integrals Are Terrific, which
stands for Logarithmic, Inverse trig, Algebraic, Trig. (If you prefer, you can
also use the mnemonic Lousy Integrals Are Terrible.) Always choose the first
function in this list as the factor to set equal to u, and then set the rest of the
product (including dx) equal to dv.

You can use integration by parts to integrate any of the functions listed in
Table 6-1.

Table 6-1 When You Can Integrate by Parts
Function Example Differentiate Integrate dv 

u to Find du to Find v

Log function ln x dx# ln x dx

Log times algebraic lnx x dx4# ln x x 4 dx

Log composed with algebraic ln x dx3# ln x 3 dx

Inverse trig forms arcsinx dx# arcsin x dx

Algebraic times sine sinx x dx2# x 2 sin x dx

Algebraic times cosine cosx x dx3 5# 3x 5 sin x dx

Algebraic times exponential x dx2
1 e x2 3# 2

1 x 2 e3 dx

Sine times exponential sin x dxe
x
2# e

x
2 sin x dx

Cosine times exponential cos x dxe x# ex cos x dx

When you’re integrating by parts, here’s the most basic rule when deciding
which term to integrate and which to differentiate: If you only know how to
integrate one of the two, that’s the one you integrate!
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Integrating by Parts with 
the DI-agonal Method

The DI-agonal method is basically integration by parts with a chart that helps
you organize information. This method is especially useful when you need to
integrate by parts more than once to solve a problem. In this section, I show
you how to use the DI-agonal method to evaluate a variety of integrals.

Looking at the DI-agonal chart
The DI-agonal method avoids using u and dv, which are easily confused (espe-
cially if you write the letters u and v as sloppily as I do!). Instead, a column for
differentiation is used in place of u, and a column for integration replaces dv.

Use the following chart for the DI-agonal method:

As you can see, the chart contains two columns: the D column for differentia-
tion, which has a plus sign and a minus sign, and the I column for integration.
You may also notice that the D and the I are placed diagonally in the chart —
yes, the name DI-agonal method works on two levels (so to speak).

Using the DI-agonal method
Earlier in this chapter, I provide a list of functions that you can integrate by
parts. The DI-agonal method works for all these functions. I also give you the
mnemonic Lovely Integrals Are Terrific (which stands for Logarithmic, Inverse
trig, Algebraic, Trig) to help you remember how to assign values of u and dv —
that is, what to differentiate and what to integrate.

I

D

+

−
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To use the DI-agonal method:

1. Write the value to differentiate in the box below the D and the value
to integrate (omitting the dx) in the box below the I.

2. Differentiate down the D column and integrate down the I column.

3. Add the products of all full rows as terms.

I explain this step in further detail in the examples that follow.

4. Add the integral of the product of the two lowest diagonally adjacent
boxes.

I also explain this step in greater detail in the examples.

Don’t spend too much time trying to figure this out. The upcoming examples
show you how it’s done and give you plenty of practice. I show you how to
use the DI-agonal method to integrate products that include logarithmic,
inverse trig, algebraic, and trig functions.

L is for logarithm
You can use the DI-agonal method to evaluate the product of a log function
and an algebraic function. For example, suppose that you want to evaluate
the following integral:

lnx x dx2#

Whenever you integrate a product that includes a log function, the log func-
tion always goes in the D column.

1. Write the log function in the box below the D and the rest of the func-
tion value (omitting the dx) in the box below the I.

2. Differentiate ln x and place the answer in the D column.

Notice that in this step, the minus sign already in the box attaches to x
1 .

I

x 2D

In x+

−
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3. Integrate x2 and place the answer in the I column.

4. Add the product of the full row that’s circled.

Here’s what you write:

lnx x3
1 3+ c m

5. Add the integral of the two lowest diagonally adjacent boxes that are
circled.

I

x 2D

In x+

− 1
x

x 31
3

I

x 2D

In x+

− 1
x

x 31
3

I

x 2D

In x+

−

x 31
3

1
x

I

x 2D

In x+

− 1
x
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Here’s what you write:

lnx x3
1 3+ +^ ch m x x dx1

3
1 3-# c cm m

At this point, you can simplify the first term and integrate the second term:

lnx x x dx3
1

3
13 2= - #

lnx x x C3
1

3
1

3
13 3= - +c cm m

lnx x x C3
1

9
13 3= - +

You can verify this answer by differentiating by using the Product Rule:

ln

ln

ln

ln

dx
d x x x C

x x x x x

x x x x

x x

3
1

9
1

3
1 3 1

3
1

3
1

3
1

3 3

2 3 2

2 2 2

2

- +

= + -

= + -

=

$

c

c

m

m

Therefore, this is the correct answer:

ln lnx x dx x x x C3
1

9
12 3 3= - +#

I is for inverse trig
You can integrate four of the six inverse trig functions (arcsin x, arccos x,
arctan x, and arccot x) by using the DI-agonal method. By the way, if you
haven’t memorized the derivatives of the six inverse trig functions (which I
give you in Chapter 2), this would be a great time to do so.

Whenever you integrate a product that includes an inverse trig function, this
function always goes in the D column.

For example, suppose that you want to integrate

arccos x dx#

143Chapter 6: Integration by Parts

11_225226-ch06.qxd  5/1/08  6:59 PM  Page 143



1. Write the inverse trig function in the box below the D and the rest of
the function value (omitting the dx) in the box below the I.

Note that a 1 goes into the I column.

2. Differentiate arccos x and place the answer in the D column, and then
integrate 1 and place the answer in the I column.

3. Add the product of the full row that’s circled.

Here’s what you write:

(+arccos x)(x)

I

1D

arccos x x+

− 1
1 − x 2

I

1D

arccos x x+

− 1
1 − x 2

I

1D

arccos x+

−
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4. Add the integral of the lowest diagonal that’s circled.

Here’s what you write:

arccosx x
x

x dx
1

1
2

+ + - -
-

#
J

L

K
K^ ^ ^

N

P

O
Oh h h

Simplify and integrate:

arccosx x
x

x dx
1 2

= +
-

#

Let u = 1 – x2

du = –2x dx

2
1- du = x dx

This variable substitution introduces a new variable u. Don’t confuse this u
with the u used for integration by parts.

arccosx x
u

du1
2
1= + -# c m

arccosx x u C2
1 2= - +` j

arccosx x u C= - +

Substituting 1 – x2 for u and simplifying gives you this answer:

arccosx x x C1 2= - - +

Therefore, arccos arccosx dx x x x C1 2= - - +# .

A is for algebraic
If you’re a bit skeptical that the DI-agonal method is really worth the trouble,
I guarantee you that you’ll find it useful when handling algebraic factors.

I

1D

arccos x x+

− 1
1 − x 2
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For example, suppose that you want to integrate the following:

sinx x dx3#

This example is a product of functions, so integration by parts is an option.
Going down the LIAT checklist, you notice that the product doesn’t contain a
log factor or an inverse trig factor. But it does include the algebraic factor x3,
so place this factor in the D column and the rest in the I column. By now,
you’re probably getting good at using the chart, so I fill it in for you here.

Your next step is normally to write the following

cos cosx x x x dx33 2+ - + - -#_ ^ _ ^i h i h

But here comes trouble: The only way to calculate the new integral is by
doing another integration by parts. And, peeking ahead a bit, here’s what you
have to look forward to:

cos sin sinx x x x x x dx3 63 2= - - - - -#_ ^ _ ^ ^ ^i h i h h h; E

cos sin cos cosx x x x x x x dx3 6 63 2= - - - - - #_ ^ _ ^ ^ ^i h i h h h; E) 3

At last, after integrating by parts three times, you finally have an integral that
you can solve directly. If evaluating this expression looks like fun (and if you
think you can do it quickly on an exam without dropping a minus sign along
the way!), by all means go for it. If not, I show you a better way. Read on.

To integrate an algebraic function multiplied by a sine, a cosine, or an expo-
nential function, place the algebraic factor in the D column and the other
factor in the I column. Differentiate the algebraic factor down to zero, and
then integrate the other factor the same number of times. You can then copy
the answer directly from the chart.

I

sin xD

−+

−

cos xx 3

3x 2
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Simply extend the DI chart as I show you here.

Notice that you just continue the patterns in both columns. In the D column,
continue alternating plus and minus signs and differentiate until you reach 0.
And in the I column, continue integrating.

The very pleasant surprise is that you can now copy the answer from the
chart. This answer contains four terms (+ C, of course), which I copy directly
from the four circled rows in the chart:

x3 (–cos x) – 3x2 (–sin x) + 6x (cos x) – 6 (sin x) + C

But wait! Didn’t I forget the final integral on the diagonal? Actually, no — but 
this integral is sindx x C0 =$# , which explains where that final C comes from.

Here’s another example, just to show you again how easy the DI-agonal
method is for products with algebraic factors:

x dx3 e x5 2#

Without the DI chart, this problem is one gigantic miscalculation waiting to
happen. But the chart keeps track of everything.

I

sin xD

sin x

−+

−

cos xx 3

3x 2

cos x6x+

−

−

+

sin x6

0
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Now, just copy from the chart, add C, and simplify:

x x x x

x C

3 2
1 15 4

1 60 8
1 180 16

1

360 32
1 360 64

1

e e e e

e e

x x x x

x x

5 2 4 2 3 2 2 2

2 2

= + - + -

+ - +

_ c _ c _ c _ c

^ c ^ c

i m i m i m i m

h m h m

x x x x x C2
3

4
15

2
15

4
45

4
45

8
45e e e e e ex x x x x x5 2 4 2 3 2 2 2 2 2= - + - + - +

This answer is perfectly acceptable, but if you want to get fancy, factor out 3⁄8
e2x and leave a reduced polynomial:

= 8
3 e2x (4x5 – 10x4 + 20x3 – 30x2 + 30x – 15) + C

T is for trig
You can use the DI-agonal method to integrate the product of either a sine or
a cosine and an exponential. For example, suppose that you want to evaluate
the following integral:

sinx dxe
x
3#

When integrating either a sine or cosine function multiplied by an exponen-
tial function, make your DI-agonal chart with five rows rather than four. Then
place the trig function in the D column and the exponential in the I column.

I

e2xD

+

−

3x 5

15x 4

60x 3+

−

+

180x 2

360x

− 360

+ 0

e2x1
2

e2x1
4

e2x1
8

e2x1
16

e2x1
32

e2x1
64
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This time, you have two rows to add, as well as the integral of the product of
the lowest diagonal:

sin cos sinx x x dx3 9 9e e e
x x x
3 3 3+ - + -#^ a ^ a ^ ah k h k h k

This may seem like a dead end because the resulting integral looks so similar
to the one that you’re trying to evaluate. Oddly enough, however, this similar-
ity makes solving the integral possible. In fact, the next step is to make the
integral that results look exactly like the one you’re trying to solve:

sin cos sinx x x dx3 9 9e e e
x x x
3 3 3= + - - #^ a ^ ah k h k

Next, substitute the variable I for the integral that you’re trying to solve. This
action isn’t strictly necessary, but it makes the course of action a little clearer.

I = (sin x)(3e
x
3 ) + (–cos x)(9e

x
3 ) – 9I

Now solve for I using a little basic algebra:

10I = (sin x)(3e
x
3 ) + (–cos x)(9e

x
3 )

I = 
sin cosx x

10

3 9e e
x x
3 3+ -^ a ^ ah k h k

Finally, substitute the original integral back into the equation, and add C:

sin sin cosx dx x x C10
1 3 9e e e

x x x
3 3 3= + - +# ^ a ^ ah k h k; E

Optionally, you can clean up this answer a bit by factoring:

sin sin cosx dx x x C10
3 3e e

x x
3 3= - +# ^ h

I

D

+

−

sin x

cos x

(–sin x )+

3e

e
x
3

x
3

x
3

9e
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If you’re skeptical that this method really gives you the right answer, check it
by differentiating by using the Product Rule:

sin cos

sin cos sin cos

sin cos cos sin

dx
d x x C

dx
d x x dx

d x x

x x x x

10
3 3

10
3 3 3

10
3

3
1 3 3

e

e e

e e

x

x x

x x

3

3 3

3 3

- +

= - + -

= - + +

^c

^ ^ a

c ^ ^ a

h m

h h k

m h h k

;

=

E

G

At this point, algebra shows that this expression is equivalent to the original
function:

sin cos cos sin

sin cos cos sin

sin sin

sin

x x x x

x x x x

x x

x

10
1 3 10

3 3

10
1

10
3

10
3

10
9

10
1

10
9

e e

e e e e

e e

e

x x

x x x x

x x

x

3 3

3 3 3 3

3 3

3

= - + +

= - + +

= +

=

a ^ ^ ak h h k
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Chapter 7

Trig Substitution: Knowing 
All the (Tri)Angles

In This Chapter
� Memorizing the basic trig integrals

� Integrating powers of sines and cosines, tangents and secants, and cotangents 
and cosecants

� Understanding the three cases for using trig substitution

� Avoiding trig substitution when possible

Trig substitution is another technique to throw in your ever-expanding
bag of integration tricks. It allows you to integrate functions that contain 

radicals of polynomials such as x4 2- and other similar difficult functions.

Trig substitution may remind you of variable substitution, which I discuss in
Chapter 5. With both types of substitution, you break the function that you
want to integrate into pieces and express each piece in terms of a new variable.
With trig substitution, however, you express these pieces as trig functions.

So, before you can do trig substitution, you need to be able to integrate a
wider variety of products and powers of trig functions. The first few parts of
this chapter give you the skills that you need. After that, I show you how to
use trig substitution to express very complicated-looking radical functions in
terms of trig functions.

Integrating the Six Trig Functions
You already know how to integrate sin x and cos x from Chapter 4, but for
completeness, here are the integrals of all six trig functions:
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sin cosx dx x C= - +#

cos sinx dx x C= +#

tan ln secx dx x C= +#

cot ln sinx dx x C= +#

sec ln sec tanx dx x x C= + +#

csc ln csc cotx dx x x C= - +#

Please commit these to memory — you need them! For practice, you can also
try differentiating each result to show why each of these integrals is correct.

Integrating Powers of Sines and Cosines
Later in this chapter, when I show you trig substitution, you need to know
how to integrate powers of sines and cosines in a variety of combinations.
In this section, I show you what you need to know.

Odd powers of sines and cosines
You can integrate any function of the form sinm x cosn x when m is odd, for
any real value of n. For this procedure, keep in mind the handy trig identity 
sin2 x + cos2 x = 1. For example, here’s how you integrate sin7 x cos 3

1
x:

1. Peel off a sin x and place it next to the dx:

sin cos sin cos sinx x dx x x x dx7
3
1 6

3
1

= ##

2. Apply the trig identity sin2 x = 1 – cos2 x to express the rest of the sines
in the function as cosines:

cos cos sinx x x dx1 2 3
3
1

= -# _ i

3. Use the variable substitution u = cos x and du = –sin x dx:

u u du1 2 3
3
1

=- -# _ i
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Now that you have the function in terms of powers of u, the worst is over. You
can expand the function out, turning it into a polynomial. This is just algebra:

u u u u du1 1 12 2 2
3
1

=- - - -# _ _ _i i i

u u u u du1 3 32 4 6
3
1

=- - + -# _ i

u u u u du3 33
1

3
7

3
13

3
19

=- - + -# a k

To continue, use the Sum Rule and Constant Multiple Rule to separate this
into four integrals, as I show you in Chapter 4. Don’t forget to distribute that
minus sign to all four integrals!

u du u du u du u du3 33
1

3
7

3
13

3
19

=- + - + ####

At this point, you can evaluate each integral separately by using the
Power Rule:

u u u u C4
3

10
9

16
9

22
3

3
4

3
10

3
16

3
22

= + - + +

Finally, use u = cos x to reverse the variable substitution:

cos cos cos cosx x x x C4
3

10
9

16
9

22
3

3
4

3
10

3
16

3
22

= + - + +

Notice that when you substitute back in terms of x, the power goes next to
the cos rather than the x, because you’re raising the entire function cos x to a
power. (See Chapter 2 if you’re unclear about this point.)

Similarly, you integrate any function of the form sinm x cosn x when n is odd,
for any real value of m. These steps are practically the same as those in the
previous example. For example, here’s how you integrate sin–4 x cos9 x:

1. Peel off a cos x and place it next to the dx:

sin cos sin cos cosx x dx x x x dx4 9 4 8=- -# #

2. Apply the trig identity cos2 x = 1 – sin2 x to express the rest of the
cosines in the function as sines:

sin sin cosx x x dx14 2 4
= --# _ i

3. Use the variable substitution u = sin x and du = cos x dx:

u u du14 2 4
= --# _ i

At this point, you can distribute the function to turn it into a polynomial and
then integrate it as I show you in the previous example.
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Even powers of sines and cosines
To integrate sin2 x and cos2 x, use the two half-angle trig identities that I show
you in Chapter 2:

sin2 x = cos x
2

1 2-

cos2 x = cos x
2

1 2+

For example, here’s how you integrate cos2 x:

1. Use the half-angle identity for cosine to rewrite the integral in terms
of cos 2x:

cos cosx dx x dx2
1 22 = +# #

2. Use the Constant Multiple Rule to move the denominator outside the
integral:

cos x dx2
1 1 2= +# ^ h

3. Distribute the function and use the Sum Rule to split it into several
integrals:

cosdx x dx2
1 1 2= + ##c m

4. Evaluate the two integrals separately:

sinx x C2
1

2
1 2= + +c m

sinx x C2
1

4
1 2= + +

As a second example, here’s how you integrate sin2 x cos4 x:

1. Use the two half-angle identities to rewrite the integral in terms of
cos 2x:

sin cos cos cosx x dx x x dx2
1 2

2
1 22 4

2

= - +## c m

2. Use the Constant Multiple Rule to move the denominators outside the
integral:

cos cosx x dx8
1 1 2 1 2

2
= - +# ^ ^h h

3. Distribute the function and use the Sum Rule to split it into several
integrals:

cos cos cosdx x dx x dx x dx8
1 1 2 2 22 3= + - -# ###c m
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4. Evaluate the resulting odd-powered integrals by using the procedure
from the earlier section “Odd powers of sines and cosines,” and evalu-
ate the even-powered integrals by returning to Step 1 of the previous
example.

Integrating Powers of 
Tangents and Secants

When you’re integrating powers of tangents and secants, here’s the rule to
remember: Eeeven powers of seeecants are eeeasy. The threee Es in the keeey
words should help you remember this rule. By the way, odd powers of tan-
gents are also easy. You’re on your own remembering this fact!

In this section, I show you how to integrate tanm x secn x for all positive inte-
ger values of m and n. You use this skill later in this chapter, when I show you
how to do trig substitution.

Even powers of secants with tangents
To integrate tanm x secn x when n is even — for example, tan8 x sec6 x — follow
these steps:

1. Peel off a sec2 x and place it next to the dx:

tan sec tan sec secx x dx x x x dx8 6 8 4 2=# #

2. Use the trig identity 1 + tan2 x = sec2 x to express the remaining secant
factors in terms of tangents:

tan tan secx x x dx18 2 2 2= +# _ i

3. Use the variable substitution u = tan x and du = sec2 x dx:

u u du18 2 2
+# _ i

At this point, the integral is a polynomial, and you can evaluate it as I show
you in Chapter 4.
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Odd powers of tangents with secants
To integrate tanm x secn x when m is odd — for example, tan7 x sec9 x — follow
these steps:

1. Peel off a tan x and a sec x and place them next to the dx:

tan sec tan sec sec tanx x x x x x dx7 9 6 8=# #

2. Use the trig identity tan2 x = sec2 x – 1 to express the remaining tan-
gent factors in terms of secants:

sec sec sec tanx x x x dx12 3 8= -# _ i

3. Use the variable substitution u = sec x and du = sec x tan x dx:

u u du12 3 8= -# _ i

At this point, the integral is a polynomial, and you can evaluate it as I show
you in Chapter 4.

Odd powers of tangents without secants
To integrate tanm x when m is odd, use a trig identity to convert the function
to sines and cosines as follows:

tan cos
sin sin cosx dx x

x dx x x dxm
m

m
m m= = -# # #

After that, you can integrate by using the procedure from the earlier section,
“Odd powers of sines and cosines.”

Even powers of tangents without secants
To integrate tanm x when m is even — for example, tan8 x — follow these steps:

1. Peel off a tan2 x and use the trig identity tan2 x = sec2 x – 1 to express it
in terms of tan x:

tan tan secx dx x x dx18 6 2= -## _ i

2. Distribute to split the integral into two separate integrals:

tan sec tanx x dx x dx6 2 6= - ##
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3. Evaluate the first integrals using the procedure I show you in the ear-
lier section “Even powers of secants with tangents.”

4. Return to Step 1 to evaluate the second integral.

Even powers of secants without tangents
To integrate secn x when n is even — for example, sec4 x — follow these steps:

1. Use the trig identity 1 + tan2 x = sec2 x to express the function in terms
of tangents:

sec tanx dx x dx14 2 2
= +# # _ i

2. Distribute and split the integral into three or more integrals:

tan tandx x dx x dx1 2 2 4= + + ###

3. Integrate all powers of tangents by using the procedures from the sec-
tions on powers of tangents without secants.

Odd powers of secants without tangents
This is the hardest case, so fasten your seat belt. To integrate secn x when n
is odd — for example, sec3 x — follow these steps:

1. Peel off a sec x:

sec sec secx dx x x dx3 2=# #

2. Use the trig identity 1 + tan2 x = sec2 x to express the remaining
secants in terms of tangents:

tan secx x dx1 2= +# _ i

3. Distribute and split the integral into two or more integrals:

sec tan secx x x dx2= + ##

4. Evaluate the first integral:

ln sec tan tan secx x x x dx2= + + #

You can omit the constant C because you still have an integral that you
haven’t evaluated yet — just don’t forget to put it in at the end.
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5. Integrate the second integral by parts by differentiating tan x and inte-
grating sec x tan x (see Chapter 6 for more on integration by parts):

ln sec tan tan sec secx x x x x dx3= + + - #

At this point, notice that you’ve shown the following equation to be true:

sec ln sec tan tan sec secx dx x x x x x dx3 3= + + - ##

6. Follow the algebraic procedure that I outline in Chapter 6.

First, substitute the variable I for the integral on both sides of the 
equation:

ln sec tan tan secI x x x x I= + + -

Now, solve this equation for I:

ln sec tan tan secI x x x x2 = + +

ln sec tan tan secI x x x x2
1

2
1= + +

Now, you can substitute the integral back for I. Don’t forget, however,
that you need to add a constant to the right side of this equation, to
cover all possible solutions to the integral:

sec ln sec tan tan secx dx x x x x C2
1

2
13 = + + +#

That’s your final answer. I truly hope that you never have to integrate
sec5 x, let alone higher odd powers of a secant. But if you do, the basic 
procedure I outline here will provide you with a value for sec x dx5# in 
terms of sec x dx3# . Good luck!

Even powers of tangents with 
odd powers of secants
To integrate tanm x secn x when m is even and n is odd, transform the function
into an odd power of secants, and then use the method that I outline in the
previous section “Odd powers of secants without tangents.”

For example, here’s how you integrate tan4 x sec3 x:

1. Use the trusty trig identity tan2 x = sec2 x – 1 to convert all the tan-
gents to secants:

tan sec sec secx x dx x x dx14 3 2 2 3= -# # _ i
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2. Distribute the function and split the integral by using the Sum Rule:

sec sec secx dx x dx x dx27 5 3= - + ###

3. Solve the resulting odd-powered integrals by using the procedure
from “Odd powers of secants without tangents.”

Unfortunately, this procedure brings you back to the most difficult case in
this section. Fortunately, most teachers are fairly merciful when you’re work-
ing with these functions, so you probably won’t have to face this integral on
an exam. If you do, however, you have my deepest sympathy.

Integrating Powers of Cotangents
and Cosecants

The methods for integrating powers of cotangents and cosecants are very
close to those for tangents and secants, which I show you in the preceding
section. For example, in the earlier section “Even powers of secants with tan-
gents,” I show you how to integrate tan8 x sec6 x. Here’s how to integrate cot8

x csc6 x:

1. Peel off a csc2 x and place it next to the dx:

cot csc cot csc cscx x dx x x x dx8 6 8 4 2= ##

2. Use the trig identity 1 + cot2 x = csc2 x to express the remaining 
cosecant factors in terms of cotangents:

cot cot cscx x x dx18 2 2 2= +# _ i

3. Use the variable substitution u = cot x and du = –csc2 x dx:

u u du18 2 2
=- +# _ i

At this point, the integral is a polynomial, and you can evaluate it as I show
you in Chapter 4.

Notice that the steps here are virtually identical to those for tangents and
secants. The biggest change here is the introduction of a minus sign in Step 3.
So, to find out everything you need to know about integrating cotangents and
cosecants, try all the examples in the previous section, but switch every tan-
gent to a cotangent and every secant to a cosecant.
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Sometimes, knowing how to integrate cotangents and cosecants can be useful
for integrating negative powers of other trig functions — that is, powers of
trig functions in the denominator of a fraction.

For example, suppose that you want to integrate 
sin

cos
x
x

6

2

-
. The methods that 

I outline earlier don’t work very well in this case, but you can use trig identi-
ties to express it as cotangents and cosecants.

sin
cos

sin
cos

sin
cot csc

x
x

x
x

x
x x1

6

2

2

2

4
2 4= =$

I show you more about this in the next section “Integrating Weird
Combinations of Trig Functions.”

Integrating Weird Combinations 
of Trig Functions

You don’t really have to know how to integrate every possible trig function
to pass Calculus II. If you can do all the techniques that I introduce earlier in
this chapter — and I admit that’s a lot to ask! — then you’ll be able to handle
most of what your professor throws at you with ease. You’ll also have a good
shot at hitting any curveballs that come at you on an exam.

But in case you’re nervous about the exam and would rather study than
worry, in this section I show you how to integrate a wider variety of trig func-
tions. I don’t promise to cover all possible trig functions exhaustively. But I
do give you a few additional ways to think about and categorize trig functions
that could help you when you’re in unfamiliar territory.

Using identities to tweak functions
You can express every product of powers of trig functions, no matter how
weird, as the product of any pair of trig functions. The three most useful pair-
ings (as you may guess from earlier in this chapter) are sine and cosine, tan-
gent and secant, and cotangent and cosecant. Table 7-1 shows you how to
express all six trig functions as each of these pairings.
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Table 7-1 Expressing the Six Trig Functions 
As a Pair of Trig Functions

Trig Function As Sines & As Tangents & As Cotangents & 
Cosines Secants Cosecants

sin x sin x sec
tan

x
x

csc x
1

cos x cos x sec x
1

csc
cot

x
x

tan x cos
sin

x
x tan x cot x

1

cot x sin
cos

x
x

tan x
1 cot x

sec x cos x
1 sec x cot

csc
x
x

csc x sin x
1

tan
sec

x
x csc x

For example, look at the following function:

sin tan sec
cos cot csc

x x x
x x x
2

3 2

As it stands, you can’t do much to integrate this monster. But try expressing
it in terms of each possible pairing of trig functions:

= 
sin
cos

x
x

8

6

= 
tan
sec

x
x

8

2

= cot6 x csc2 x

As it turns out, the most useful pairing for integration in this case is cot6 x
csc2 x. No fraction is present — that is, both terms are raised to positive
powers — and the cosecant term is raised to an even power, so you can use
the same basic procedure that I show you in the earlier section “Even powers
of secants with tangents.”

Using Trig Substitution
Trig substitution is similar to variable substitution (which I discuss in
Chapter 5), using a change in variable to turn a function that you can’t inte-
grate into one that you can. With variable substitution, you typically use the
variable u. With trig substitution, however, you typically use the variable θ.
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Trig substitution allows you to integrate a whole slew of functions that you
can’t integrate otherwise. These functions have a special, uniquely scary look
about them, and are variations on these three themes:

(a2 – bx2)n

(a2 + bx2)n

(bx2 – a2)n

Trig substitution is most useful when n is 2
1 or a negative number — that is, 

for hairy square roots and polynomials in the denominator of a fraction.
When n is a positive integer, your best bet is to express the function as a
polynomial and integrate it as I show you in Chapter 4.

In this section, I show you how to use trig substitution to integrate functions
like these. But, before you begin, take this simple test:

Trig substitution is:

� A) Easy and fun — even a child can do it!

� B) Not so bad when you know how.

� C) About as attractive as drinking bleach.

I wish I could tell you that the answer is A, but then I’d be a big liarmouth and
you’d never trust me again. So I admit that trig substitution is less fun than a
toga party with a hot date. At the same time, your worst trig substitution
nightmares don’t have to come true, so please put the bottle of bleach back
in the laundry room.

I have the system right here, and if you follow along closely, I give you the
tool that you need to make trig substitution mostly a matter of filling in the
blanks. Trust me — have I ever lied to you?

Distinguishing three cases 
for trig substitution
Trig substitution is useful for integrating functions that contain three very
recognizable types of polynomials in either the numerator or denominator.
Table 7-2 lists the three cases that you need to know about.
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Table 7-2 The Three Trig Substitution Cases
Case Radical of Polynomial Example

Sine case (a2 – bx2)n x dx4 2-#

Tangent case (a2 + bx2)n

x
dx

4 9
1

2 2
+

#
_ i

Secant case (bx2 – a2)n

x
dx

16 1
1

2 -
#

The first step to trig substitution is being able to recognize and distinguish
these three cases when you see them.

Knowing the formulas for differentiating the inverse trig functions can help
you remember these cases.

arcsindx
d x

x1
1

2
=

-

arctandx
d x

x1
1

2=
+

secdx
d x

x x 1
1arc

2
=

-

Note that the differentiation formula for arcsin x contains a polynomial that
looks like the sine case: a constant minus x2. The formula for arctan x con-
tains a polynomial that looks like the tangent case: a constant plus x2. And
the formula for arcsec x contains a polynomial that looks like the secant case:
x2 minus a constant. So, if you already know these formulas, you don’t have to
memorize any additional information.

Integrating the three cases
Trig substitution is a five-step process:

1. Draw the trig substitution triangle for the correct case.

2. Identify the separate pieces of the integral (including dx) that you
need to express in terms of θ.

3. Express these pieces in terms of trig functions of θ.

4. Rewrite the integral in terms of θ and evaluate it.

5. Substitute x for θ in the result.
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Don’t worry if these steps don’t make much sense yet. In this section, I show
you how to do trig substitution for each of the three cases.

The sine case
When the function you’re integrating includes a term of the form (a2 – bx2)n,
draw your trig substitution triangle for the sine case. For example, suppose
that you want to evaluate the following integral:

x dx4 2-#

This is a sine case, because a constant minus a multiple of x2 is being raised 
to a power 2

1
c m. Here’s how you use trig substitution to handle the job:

1. Draw the trig substitution triangle for the correct case.

Figure 7-1 shows you how to fill in the triangle for the sine case. Notice
that the radical goes on the adjacent side of the triangle. Then, to fill in
the other two sides of the triangle, I use the square roots of the two
terms inside the radical — that is, 2 and x. I place 2 on the hypotenuse
and x on the opposite side.

You can check to make sure that this placement is correct by using the 

Pythagorean theorem: x x4 22 2
2

2+ - =` j .

2. Identify the separate pieces of the integral (including dx) that you
need to express in terms of θ.

In this case, the function contains two separate pieces that contain x: 
x4 2- and dx.

3. Express these pieces in terms of trig functions of θ.

This is the real work of trig substitution, but when your triangle is set up
properly, this work becomes a lot easier. In the sine case, all trig func-
tions should be sines and cosines.

4 − x 2

θ

x
2

Figure 7-1:
A trig

substitution
triangle for

the sine
case.
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To represent the radical portion as a trig function of θ, first build a frac-
tion using the radical x4 2- as the numerator and the constant 2 as the
denominator. Then set this fraction equal to the appropriate trig function:

cos
x θ2

4 2-
=

Because the numerator is the adjacent side of the triangle and the 

denominator is the hypotenuse H
A

c m, this fraction is equal to ccs θ. Now, 

a little algebra gets the radical alone on one side of the equation:

cosx θ4 22- =

Next, you want to express dx as a trig function of θ. To do so, build
another fraction with the variable x in the numerator and the constant
2 in the denominator. Then set this fraction equal to the correct trig
function:

x
2 = sin θ

This time, the numerator is the opposite side of the triangle and the 

denominator is the hypotenuse H
O

c m, so this fraction is equal to sin θ. 

Now, solve for x and then differentiate:

x = 2 sin θ

dx = 2 cos θ dθ

4. Rewrite the integral in terms of θ and evaluate it:

x dx4 2-#

cos cos dθ θ θ2 2:#

cos dθ θ4 2= #

Knowing how to evaluate trig integrals really pays off here. I cut to the
chase in this example, but earlier in this chapter (in “Integrating Powers
of Sines and Cosines”), I show you how to integrate all sorts of trig func-
tions like this one:

= 2θ + sin 2θ + C

5. To change those two θ terms into x terms, reuse the following equation:

x
2 = sin θ

θ = arcsin x
2
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So here’s a substitution that gives you an answer:

= 2 arcsin x
2 + sin(2 arcsin x

2 ) + C

This answer is perfectly valid so, technically speaking, you can stop here.
However, some professors frown upon the nesting of trig and inverse trig 
functions, so they’ll prefer a simplified version of sin(2 arcsin x

2 ). To find 
this, start by applying the double-angle sine formula (see Chapter 2) to sin 2θ:

sin sin cosθ θ θ2 2=

Now, use your trig substitution triangle to substitute values for sin θ and cos
θ in terms of x:

x x

x x

2 2 2
4

2
1 4

2

2

=
-

= -

J

L

K
Kc

N

P

O
Om

To finish up, substitute this expression for that problematic second term to
get your final answer in a simplified form:

2 θ + sin 2 θ + C

arcsin x x x C2 2 2
1 4 2= + - +

The tangent case
When the function you’re integrating includes a term of the form (a2 + x2)n,
draw your trig substitution triangle for the tangent case. For example, sup-
pose that you want to evaluate the following integral:

x
dx

4 9
1

2 2
+

#
_ i

This is a tangent case, because a constant plus a multiple of x2 is being raised
to a power (–2). Here’s how you use trig substitution to integrate:

1. Draw the trig substitution triangle for the tangent case.

Figure 7-2 shows you how to fill in the triangle for the tangent case.
Notice that the radical of what’s inside the parentheses goes on the
hypotenuse of the triangle. Then, to fill in the other two sides of the trian-
gle, use the square roots of the two terms inside the radical — that is, 2
and 3x. Place the constant term 2 on the adjacent side and the variable
term 3x on the opposite side.
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With the tangent case, make sure not to mix up your placement of the
variable and the constant.

2. Identify the separate pieces of the integral (including dx) that you
need to express in terms of θ.

In this case, the function contains two separate pieces that contain x: 

x4 9
1

2 2
+_ i

and dx.

3. Express these pieces in terms of trig functions of θ.

In the tangent case, all trig functions should be initially expressed as tan-
gents and secants.

To represent the rational portion as a trig function of θ, build a fraction 
using the radical x4 9 2+ as the numerator and the constant 2 as the
denominator. Then set this fraction equal to the appropriate trig function:

sec
x θ2

4 9 2+
=

Because this fraction is the hypotenuse of the triangle over the adjacent 

side A
H

c m, it’s equal to sec θ. Now, use algebra and trig identities to 

tweak this equation into shape:

secx θ4 9 22+ =

secx θ4 9 82 2 4+ =_ i

secx θ4 9
1

8
1

2 2 4
+

=
_ i

Next, express dx as a trig function of θ. To do so, build another fraction
with the variable 3x in the numerator and the constant 2 in the 
denominator:

x
2

3 = tan θ

2

θ

3x4 + 9x2
Figure 7-2:

A trig
substitution
triangle for
the tangent

case.
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This time, the fraction is the opposite side of the triangle over the adja-

cent side A
O

c m, so it equals tan θ. Now, solve for x and then differentiate:

x = 3
2 tan θ

dx = 3
2 sec2 θ dθ

4. Express the integral in terms of θ and evaluate it:

x
dx

4 9
1

2 2
+

#
_ i

sec
sec dθ θ θ

8
1

3
2

4
2= $#

Now, some cancellation and reorganization turns this nasty-looking inte-
gral into something manageable:

cos dθ θ12
1 2= #

At this point, use your skills from the earlier section “Even Powers of
Sines and Cosines” to evaluate this integral:

sin Cθ θ24
1

48
1 2= + +

5. Change the two θ terms back into x terms:

You need to find a way to express θ in terms of x. Here’s the simplest way:

tan θ = x
2

3

θ = arctan x
2

3

So here’s a substitution that gives you an answer:

sin arctan sin arctanC x x Cθ θ24
1

48
1 2 24

1
2

3
48
1 2 2

3+ + = + +c m

This answer is valid, but most professors won’t be crazy about that ugly second
term, with the sine of an arctangent. To simplify it, apply the double-angle sine 

formula (see Chapter 2) to sin θ48
1 2 :

sin sin cosθ θ θ48
1 2 24

1=

Now, use your trig substitution triangle to substitute values for sin θ and cos
θ in terms of x:
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x
x

x

x
x

x
x

24
1

4 9
3

4 9
2

24 4 9
6

16 36

2 2

2

2

=
+ +

=
+

=
+

J

L

K
K

J

L

K
K

_

_

N

P

O
O

N

P

O
O

i

i

Finally, use this result to express the answer in terms of x:

sin

arctan

C

x
x

x C

θ θ24
1

48
1 2

24
1

2
3

16 36 2

+ +

= +
+

+
_ i

The secant case
When the function that you’re integrating includes a term of the form (bx2 – a2)n,
draw your trig substitution triangle for the secant case. For example, suppose
that you want to evaluate this integral:

x
dx

16 1
1

2 -
#

This is a secant case, because a multiple of x2 minus a constant is being raised 

to a power 2
1-c m. Integrate by using trig substitution as follows:

1. Draw the trig substitution triangle for the secant case.

Figure 7-3 shows you how to fill in the triangle for the secant case. Notice
that the radical goes on the opposite side of the triangle. Then, to fill in
the other two sides of the triangle, use the square roots of the two terms
inside the radical — that is, 1 and 4x. Place the constant 1 on the adja-
cent side and the variable 4x on the hypotenuse.

You can check to make sure that this placement is correct by using the 
Pythagorean theorem: x x1 16 1 42 2

2 2
+ - =` ^j h .

16x 2 − 1

θ

4x

1

Figure 7-3:
A trig

substitution
triangle for
the secant

case.
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2. Identify the separate pieces of the integral (including dx) that you
need to express in terms of θ.

In this case, the function contains two separate pieces that contain x:

x16 1
1

2 -
and dx.

3. Express these pieces in terms of trig functions of θ.

In the secant case (as in the tangent case), all trig functions should be
initially represented as tangents and secants.

To represent the radical portion as a trig function of θ, build a fraction 
by using the radical x16 12 - as the numerator and the constant 1 as
the denominator. Then set this fraction equal to the appropriate trig
function:

tan
x θ1

16 12 -
=

Notice that this fraction is the opposite side of the triangle over the
adjacent side A

O
c m, so it equals tan θ. Simplifying it a bit gives you this

equation:

tanx θ16 1
1 1

2 -
=

Next, express dx as a trig function of θ. To do so, build another
fraction with the variable x in the numerator and the constant 1 in
the denominator:

x
1

4 = sec θ

This time, the fraction is the hypotenuse over the adjacent side of the 

triangle A
H

c m, which equals sec θ. Now, solve for x and differentiate to
find dx:

x = 4
1 sec θ

dx = 4
1 sec θ tan θ dθ

4. Express the integral in terms of θ and evaluate it:

tan sec tan
x

dx dθ θ θ θ
16 1

1 1
4
1

2 -
= $# #

sec dθ θ4
1= #

Now, use the formula for the integral of the secant function from
“Integrating the Six Trig Functions” earlier in this chapter:

= 4
1 ln |sec θ + tan θ| + C
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5. Change the two θ terms back into x terms:

In this case, you don’t have to find the value of θ because you already
know the values of sec θ and tan θ in terms of x from Step 3. So, substi-
tute these two values to get your final answer:

ln x x C4
1 4 16 12= + - +

Knowing when to avoid trig substitution
Now that you know how to use trig substitution, I give you a skill that can be
even more valuable: avoiding trig substitution when you don’t need it. For
example, look at the following integral:

x dx1 4 2
2

-# _ i

This might look like a good place to use trig substitution, but it’s an even
better place to use a little algebra to expand the problem into a polynomial:

x x dx1 8 162 4= - +# _ i

Similarly, look at this integral:

x
x dx

492 -
#

You can use trig substitution to evaluate this integral if you want to. (You can
also walk to the top of the Empire State Building instead of taking the elevator
if that tickles your fancy.) However, the presence of that little x in the numera-
tor should tip you off that variable substitution will work just as well (flip to
Chapter 5 for more on variable substitution):

Let u = x2 – 49

du = 2x dx

2
1

du = x dx

Using this substitution results in the following integral:

u
du2

1 1= #

u C= +

x C492= - +

Done! I probably don’t need to tell you how much time and aggravation you
can save by working smarter rather than harder. So I won’t!
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Chapter 8

When All Else Fails: Integration
with Partial Fractions

In This Chapter
� Rewriting complicated fractions as the sum of two or more partial fractions

� Knowing how to use partial fractions in four distinct cases

� Integrating with partial fractions

� Using partial fractions with improper rational expressions

Let’s face it: At this point in your math career, you have bigger things to
worry about than adding a couple of fractions. And if you’ve survived

integration by parts (Chapter 6) and trig integration (Chapter 7), multiplying
a few polynomials isn’t going to kill you either.

So, here’s the good news about partial fractions: They’re based on very simple
arithmetic and algebra. In this chapter, I introduce you to the basics of partial
fractions and show you how to use them to evaluate integrals. I illustrate four
separate cases in which partial fractions can help you integrate functions that
would otherwise be a big ol’ mess.

Now, here’s the bad news: Although the concept of partial fractions isn’t 
difficult, using them to integrate is just about the most tedious thing you
encounter in this book. And as if that weren’t enough, partial fractions only
work with proper rational functions, so I show you how to distinguish these
from their ornery cousins, improper rational functions. I also give you a big
blast from the past, a refresher on polynomial division, which I promise is
easier than you remember it to be.
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Strange but True: Understanding
Partial Fractions

Partial fractions are useful for integrating rational functions — that is, functions
in which a polynomial is divided by a polynomial. The basic tactic behind par-
tial fractions is to split up a rational function that you can’t integrate into two
or more simpler functions that you can integrate.

In this section, I show you a simple analogy for partial fractions that involves
only arithmetic. After you understand this analogy, partial fractions make a
lot more sense. At the end of the section, I show you how to solve an integral
by using partial fractions.

Looking at partial fractions
Suppose that you want to split the fraction 15

14 into a sum of two smaller frac-
tions. Start by decomposing the denominator down to its factors — 3 and 5 —
and setting the denominators of these two smaller fractions to these numbers:

A B A B
15
14

3 5 15
5 3= + = +

So, you want to find an A and a B that satisfy this equation:

5A + 3B = 14

Now, just by eyeballing this fraction, you can probably find the nice integer
solution A = 1 and B = 3, so:

15
14

3
1

5
3= +

If you include negative fractions, you can find integer solutions like this for 
every fraction. For example, the fraction 15

1 seems too small to be a sum of
thirds and fifths, until you discover:

3
2

5
3

15
1- =
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Using partial fractions with
rational expressions
The technique of breaking up fractions works for rational expressions. It can
provide a strategy for integrating functions that you can’t compute directly.
For example, suppose that you’re trying to find this integral:

x
dx

9
6

2 -
#

You can’t integrate this function directly, but if you break it into the sum of
two simpler rational expressions, you can use the Sum Rule to solve them sep-
arately. And, fortunately, the polynomial in the denominator factors easily:

x x x9
6

3 3
6

2 -
=

+ -^ ^h h

So, set up this polynomial fraction just as I do with the regular fractions in
the previous section:

x x x
A

x
B

x x
A x B x

3 3
6

3 3

3 3
3 3

+ -
=

+
+

-

=
+ -

- + +

^ ^

^ ^

^ ^

h h

h h

h h

This gives you the following equation:

A(x – 3) + B(x + 3) = 6

This equation works for all values of x. You can exploit this fact to find the
values of A and B by picking helpful values of x. To solve this equation for A
and B, substitute the roots of the original polynomial (3 and –3) for x and
watch what happens:

A(3 – 3) + B(3 + 3) = 6 A(–3 – 3) + B(–3 + 3) = 6

6B = 6 –6A = 6

B = 1 A = –1

Now substitute these values of A and B back into the rational expressions:

x x x x3 3
6

3
1

3
1

+ -
= -

+
+

-^ ^h h
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This sum of two rational expressions is a whole lot friendlier to integrate than
what you started with. Use the Sum Rule followed by a simple variable substi-
tution (see Chapter 5):

x x dx3
1

3
1-

+
+

-
# c m

x dx x dx3
1

3
1=-

+
+

-
# #

= –ln |x + 3| + ln |x – 3| + C

As with regular fractions, you can’t always break rational expressions apart
in this fashion. But in four distinct cases, which I discuss in the next section,
you can use this technique to integrate complicated rational functions.

Solving Integrals by Using
Partial Fractions

In the last section, I show you how to use partial fractions to split a compli-
cated rational function into several smaller and more-manageable functions.
Although this technique will certainly amaze your friends, you may be won-
dering why it’s worth learning.

The payoff comes when you start integrating. Lots of times, you can integrate
a big rational function by breaking it into the sum of several bite-sized chunks.
Here’s a bird’s-eye view of how to use partial fractions to integrate a rational
expression:

1. Set up the rational expression as a sum of partial fractions with
unknowns (A, B, C, and so forth) in the numerators.

I call these unknowns rather than variables to distinguish them from x,
which remains a variable for the whole problem.

2. Find the values of all the unknowns and plug them into the partial
fractions.

3. Integrate the partial fractions separately by whatever method works.

In this section, I focus on these three steps. I show you how to turn a compli-
cated rational function into a sum of simpler rational functions and how to
replace unknowns (such as A, B, C, and so on) with numbers. Finally, I give
you a few important techniques for integrating the types of simpler rational
functions that you often see when you use partial fractions.
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Setting up partial fractions case by case
Setting up a sum of partial fractions isn’t difficult, but there are four distinct
cases to watch out for. Each case results in a different setup — some easier
than others.

Try to get familiar with these four cases, because I use them throughout this
chapter. Your first step in any problem that involves partial fractions is to
recognize which case you’re dealing with so that you can solve the problem.

Each of these cases is listed in Table 8-1.

Table 8-1 The Four Cases for Setting up Partial Fractions
Case Example As Partial Fractions

Case #1: Distinct linear x x
x

4 7+ -^ ^h h x
A

x
B

4 7+
+

-
factors

Case #2: Distinct irreducible 
x x3 9

8
2 2+ +_ _i i x x

A Bx
x

C Dx
3 3 92

- +

+ +
+

+

` `j jquadratic factors

Case #3: Repeated 
x
x

5
2 2

2
+

+

^ h x
A

x
B

5 5
2+

+
+^ hlinear factors

Case #4: Repeated 
x
x

6
2

2 2

2

+

-

_ i x
A Bx

x
C Dx

6 6
2 2 2+
+ +

+

+

_ iquadratic factors

Case #1: Distinct linear factors
The simplest case in which partial fractions are helpful is when the denomi-
nator is the product of distinct linear factors — that is, linear factors that are
nonrepeating.

For each distinct linear factor in the denominator, add a partial fraction of the
following form:

A
linear factor

For example, suppose that you want to integrate the following rational
expression:

x x x2 5
1

+ -^ ^h h
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The denominator is the product of three distinct linear factors — x, (x + 2),
and (x – 5) — so it’s equal to the sum of three fractions with these factors as
denominators:

x
A

x
B

x
C

2 5= +
+

+
-

The number of distinct linear factors in the denominator of the original expres-
sion determines the number of partial fractions. In this example, the presence
of three factors in the denominator of the original expression yields three par-
tial fractions.

Case #2: Distinct quadratic factors
Another not-so-bad case where you can use partial fractions is when the
denominator is the product of distinct quadratic factors — that is, quadratic
factors that are nonrepeating.

For each distinct quadratic factor in the denominator, add a partial fraction
of the following form:

A Bx
quadratic factor

+

For example, suppose that you want to integrate this function:

x x
x

2 3
5 6

2- +
-

^ _h i

The first factor in the denominator is linear, but the second is quadratic
and can’t be decomposed to linear factors. So, set up your partial fractions
as follows:

x
A

x
Bx C

2 32=
-

+
+
+

As with distinct linear factors, the number of distinct quadratic factors in the
denominator tells you how many partial fractions you get. So in this example,
two factors in the denominator yield two partial fractions.

Case #3: Repeated linear factors
Repeated linear factors are more difficult to work with because each factor
requires more than one partial fraction.

For each squared linear factor in the denominator, add two partial fractions
in the following form:

A B
linear factor linear factor

2+
^ h
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For each quadratic factor in the denominator that’s raised to the third power,
add three partial fractions in the following form:

A B C
linear factor linear factor linear factor

32+ +
^ ^h h

Generally speaking, when a linear factor is raised to the nth power, add n par-
tial fractions. For example, suppose that you want to integrate the following
expression:

x x
x
5 1

3
3

2

+ -

-

^ ^h h

This expression contains all linear factors, but one of these factors (x + 5) is
nonrepeating and the other (x – 1) is raised to the third power. Set up your
partial fractions this way:

x
A

x
B

x
C

x
D

5 1 1 1
2 3=

+
+

-
+

-
+

-^ ^h h

As you can see, I add one partial fraction to account for the nonrepeating
factor and three to account for the repeating factor.

Case #4: Repeated quadratic factors
Your worst nightmare when it comes to partial fractions is when the denomi-
nator includes repeated quadratic factors.

For each squared quadratic factor in the denominator, add two partial frac-
tions in the following form:

Ax B Cx D
quadratic factor quadratic factor

2
+ + +

_ i

For each quadratic factor in the denominator that’s raised to the third power,
add three partial fractions in the following form:

Ax B Cx D Ex F
quadratic factor quadratic factor quadratic factor

2 3
+ + + + +

_ _i i

Generally speaking, when a quadratic factor is raised to the nth power, add n
partial fractions. For example:

x x x x
x

8 1 3
7

2 2 2
- + + +

+

^ _ _h i i

This denominator has one nonrepeating linear factor (x – 8), one nonrepeate-
ing quadratic factor (x 2 + x – 1), and one quadratic expression that’s squared
(x 2 + 3). Here’s how you set up the partial fractions:

x
A x x x x

x
D Ex

x
F Gx

Σ Σ8 1 1 5 1 5
3 3

2
2 2 2=

-
+ + - = - - + - - - +

+
+ +

+

+$
J

L

K
K

J

L

K
Ke e

_

N

P

O
O

N

P

O
Oo o

i
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This time, I added one partial fraction for each of the nonrepeating factors
and two partial fractions for the squared factor.

Beyond the four cases: Knowing how to set up any partial fraction
At the outset, I have some great news: You’ll probably never have to set up a
partial fraction any more complex than the one that I show you in the previ-
ous section. So relax.

I’m aware that some students like to get this stuff on a case-by-case basis,
so that’s why I introduce it that way. However, other students prefer to be
shown an overall pattern, so they can get the Zen math experience. If this
is your path, read on. If not, feel free to skip ahead.

You can break any rational function into a sum of partial fractions. You just
need to understand the pattern for repeated higher-degree polynomial fac-
tors in the denominator. This pattern is simplest to understand with an exam-
ple. Suppose that you’re working with the following rational function:

x x x
x

7 1 2 1
5 1

4 5 2 2 2
+ + +

+

_ ^ _i h i

In this factor, the denominator includes a problematic factor that’s a fourth-
degree polynomial raised to the fifth power. You can’t decompose this factor
further, so the function falls outside the four cases I outline earlier in this
chapter. Here’s how you break this rational function into partial fractions:

x
Ax Bx Cx D

7 14

3 2

=
+

+ + + +

x
Ex Fx Gx H

7 14 2

3 2

+

+ + + +
_ i

x
Ix Jx Kx L

7 14 3

3 2

+

+ + + +
_ i

x
Mx Nx Ox P

7 14 4

3 2

+

+ + + +
_ i

x

Qx Rx Sx T

7 14 5

3 2

+

+ + +
+

_ i

x
U

x
V

2 2
2+

+
+

+
^ h

x
Wx X

x
Yx Z

1 1
2 2 2
+
+ +

+

+
_ _i i
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As you can see, I completely run out of capital letters. As you can also see,
the problematic factor spawns five partial fractions — that is, the same
number as the power it’s raised to. Furthermore:

� The numerator of each of these fractions is a polynomial of one degree
less than the denominator.

� The denominator of each of these fractions is a carbon copy of the origi-
nal denominator, but in each case raised to a different power up to and
including the original.

The remaining two factors in the denominator — a repeated linear (Case #3)
and a repeated quadratic (Case #4) — give you the remaining four fractions,
which look tiny and simple by comparison.

Clear as mud? Spend a little time with this example and the pattern should
become clearer. Notice, too, that the four cases that I outline earlier in this
chapter all follow this same general pattern.

You’ll probably never have to work with anything as complicated as this —
let alone try to integrate it! — but when you understand the pattern, you can
break any rational function into partial fractions without worrying which
case it is.

Knowing the ABCs of finding unknowns
You have two ways to find the unknowns in a sum of partial fractions. The
easy and quick way is by using the roots of polynomials. Unfortunately, this
method doesn’t always find all the unknowns in a problem, though it often
finds a few of them. The second way is to set up a system of equations.

Rooting out values with roots
When a sum of partial fractions has linear factors (either distinct or
repeated), you can use the roots of these linear factors to find the values of
unknowns. For example, in the earlier section “Case #1: Distinct linear fac-
tors,” I set up the following equation:

x x x x
A

x
B

x
C

2 5
1

2 5+ -
= +

+
+

-^ ^h h

To find the values of the unknowns A, B, and C, first get a common denomina-
tor on the right side of this equation (the same denominator that’s on the left
side):

x x x x x x
A x x Bx x Cx x

2 5
1

2 5
2 5 5 2

+ -
=

+ -

+ - + - + +

^ ^ ^ ^

^ ^ ^ ^

h h h h

h h h h
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Now, multiply both sides by this denominator:

1 = A(x + 2)(x – 5) + Bx(x – 5) + Cx(x + 2)

To find the values of A, B, and C, substitute the roots of the three factors (0,
–2, and 5):

1 = A(2)(–5) 1 = B(–2)(–2 – 5) 1 = C(5)(5 + 2)

A = 10
1- B = 14

1 C = 35
1

Plugging these values back into the original integral gives you:

x x x10
1

14 2
1

35 5
1- +

+
+

-^ ^h h

This expression is equivalent to what you started with, but it’s much easier
to integrate. To do so, use the Sum Rule to break it into three integrals, the
Constant Multiple Rule to move fractional coefficients outside each integral,
and variable substitution (see Chapter 5) to do the integration. Here’s the
answer so that you can try it out:

x x x
dx10

1
14 2

1
35 5

1- +
+

+
-

#
^ ^h h

R

T

S
SS

V

X

W
WW

ln ln lnx x x K10
1

14
1 2 35

1 5= - + + + - +^ ^h h

In this answer, I use K rather than C to represent the constant of integration
to avoid confusion, because I already use C in the earlier partial fractions.

Working systematically with a system of equations
Setting up a system of equations is an alternative method for finding the value
of unknowns when you’re working with partial fractions. It’s not as simple as
plugging in the roots of factors (which I show you in the last section), but it’s
your only option when the root of a quadratic factor is imaginary.

To illustrate this method and why you need it, I use the problem that I set up
in “Case #2: Distinct quadratic factors”:

x x
x

x
A

x
Bx C

2 3
5 6

2 32 2
- +

- =
-

+
+
+

^ _h i

To start out, see how far you can get by plugging in the roots of equations.
As I show you in “Rooting out values with roots,” begin by getting a common
denominator on the right side of the equation:

x x
x

x x
A x Bx C x

2 3
5 6

2 3
3 2

2 2

2

- +
- =

- +

+ + + -

^ _ ^ _

^ _ ^ ^

h i h i

h i h h
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Now, multiply the whole equation by the denominator:

5x – 6 = (A)(x2 + 3) + (Bx + C)(x – 2)

The root of x – 2 is 2, so let x = 2 and see what you get:

5(2) – 6 = A(22 + 3)

A = 7
4

Now, you can substitute 7
4 for A:

x
x

Bx C x5 6
7 3

4 22- =
+

+ + -
_

^ ^
i

h h

Unfortunately, x2 + 3 has no root in the real numbers, so you need a different
approach. First, get rid of the parentheses on the right side of the equation:

x x Bx Bx Cx C5 6 7
4

7
12 2 22 2- = + + - + -

Next, combine similar terms (using x as the variable by which you judge simi-
larity). This is just algebra, so I skip a few steps here:

x B x B C C7
4 2 5 7

12 2 6 02 + + - + - + - + =c ^ cm h m

Because this equation works for all values of x, I now take what appears to be
a questionable step, breaking this equation into three separate equations as
follows:

7
4 + B = 0

–2B + C – 5 = 0

7
12 – 2C + 6 = 0

At this point, a little algebra tells you that B = 7
4- and C = 7

27 . So you can 
substitute the values of A, B, and C back into the partial fractions:

x x
x

x x

x

2 3
5 6

7 2
4

3
7
4

7
27

2 2
- +

- =
-

+
+

- +

^ _ ^h i h

You can simplify the second fraction a bit:

x x
x

7 2
4

7 3
4 27

2-
+

+
- +

^ _h i
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Integrating partial fractions
After you express a hairy rational expression as the sum of partial fractions,
integrating becomes a lot easier. Generally speaking, here’s the system:

1. Split all rational terms with numerators of the form Ax + B into two
terms.

2. Use the Sum Rule to split the entire integral into many smaller 
integrals.

3. Use the Constant Multiple Rule to move coefficients outside each 
integral.

4. Evaluate each integral by whatever method works.

Linear factors: Cases #1 and #3
When you start out with a linear factor — whether distinct (Case #1) or
repeated (Case #3) — using partial fractions leaves you with an integral in
the following form:

ax b
dx1

n
+

#
^ h

Integrate all these cases by using the variable substitution u = ax + b so that 
du = a dx and a

du = dx. This substitution results in the following integral:

a u du1 1
n= #

Here are a few examples:

lnx dx x C3 5
1

3
1 3 5

+
= + +#

x
dx

x
C

6 1
1

6 6 1
1

2
-

=-
-

+#
^ ^h h

x
dx

x
C

9
1

2 9
1

3 2
+

=-
+

+#
^ ^h h

Quadratic factors of the form (ax2 + C): Cases #2 and #4
When you start out with a quadratic factor of the form (ax2 + C ) — whether
distinct (Case #2) or repeated (Case #4) — using partial fractions results in
the following two integrals:

ax C
x dxn2 +

#
_ i

ax C
dx1

n2 +
#
_ i

184 Part II: Indefinite Integrals 

13_225226-ch08.qxd  5/1/08  9:53 PM  Page 184



Integrate the first by using the variable substitution u = ax2 + C so that 
du = ax dx and a

du = x dx. This substitution results in the following integral:

a u du1 1
n= #

This is the same integral that arises in the linear case that I describe in the
previous section. Here are some examples:

ln
x

x dx x C
7 1 14

1 7 12
2

+
= + +#

x
x dx

x
C

4 4
2

2 2 2
+

= -
+

+#
_ _i i

x
x dx

x
C

8 2 32 8 2
1

2 3 2 2
-

=
-

- +#
_ _i i

To evaluate the second integral, use the following formula:

arctan
x n

dx n n
x C1 1

2 2+
= +#

Quadratic factors of the form (ax2 + bx + C): Cases #2 and #4
Most math teachers have at least a shred of mercy in their hearts, so they
don’t tend to give you problems that include this most difficult case. When
you start out with a quadratic factor of the form (ax2 + bx + C ) — whether
distinct (Case #2) or repeated (Case #4) — using partial fractions results in
the following integral:

ax bx C
hx k dxn2 + +

+#
_ i

I know, I know — that’s way too many letters and not nearly enough numbers.
Here’s an example:

x x
x dx
6 13

5
2 + +

-#

This is about the hairiest integral you’re ever going to see at the far end of
a partial fraction. To evaluate it, you want to use the variable substitution 
u = x2 + 6x + 13 so that du = (2x + 6) dx. If the numerator were 2x + 6, you’d be
in great shape. So you need to tweak the numerator a bit. First multiply it by
2 and divide the whole integral by 2:

x x
x dx2

1
6 13

2 10
2=
+ +

-#
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Because you multiplied the entire integral by 1, no net change has occurred.
Now, add 16 and –16 to the numerator:

x x
x dx2

1
6 13

2 6 16
2=
+ +
+ -#

This time, you add 0 to the integral, which doesn’t change its value. At this
point, you can split the integral in two:

x x
x dx

x x
dx2

1
6 13

2 6 16
6 13
1

2 2=
+ +

+ -
+ +

##< F

At this point, you can use the desired variable substitution (which I mention
a few paragraphs earlier) to change the first integral as follows:

x x
x dx u du
6 13

2 6 1
2 + +

+ =# #

= ln |u| + C

= ln |x2 + 6x + 13| + C

To solve the second integral, complete the square in the denominator: Divide
the b term (6) by 2 and square it, and then represent the C term (13) as the
sum of this and whatever’s left:

x x
dx16

6 9 4
1

2-
+ + +

#

Now, split the denominator into two squares:

x
dx16

3 2
1

2 2
=-

+ +
#
^ h

To evaluate this integral, use the same formula that I show you in the previ-
ous section:

arctan
x n

dx n n
x C1 1

2 2+
= +#

So here’s the final answer for the second integral:

arctan x C8 2
3- + +

Therefore, piece together the complete answer as follows:

x x
x dx
6 13

5
2 + +

-#

ln arctanx x x C2
1 6 13 8 2

32= + + - + +; E

ln arctanx x x C2
1 6 13 4 2

32= + + - + +
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Integrating Improper Rationals
Integration by partial fractions works only with proper rational expressions,
but not with improper rational expressions. In this section, I show you how to
tell these two beasts apart. Then I show you how to use polynomial division
to turn improper rationals into more acceptable forms. Finally, I walk you
through an example in which you integrate an improper rational expression
by using everything in this chapter.

Distinguishing proper and improper 
rational expressions
Telling a proper fraction from an improper one is easy: A fraction b

a is proper if 
the numerator (disregarding sign) is less than the denominator, and improper
otherwise.

With rational expressions, the idea is similar, but instead of comparing the
value of the numerator and denominator, you compare their degrees. The
degree of a polynomial is its highest power of x (flip to Chapter 2 for a
refresher on polynomials).

A rational expression is proper if the degree of the numerator is less than the
degree of the denominator, and improper otherwise.

For example, look at these three rational expressions:

x
x 2

3

2 +

x
x

3 12

5

-

x
x

3 2
5
4

4

-
-

In the first example, the numerator is a second-degree polynomial and the
denominator is a third-degree polynomial, so the rational is proper. In the
second example, the numerator is a fifth-degree polynomial and the denomi-
nator is a second-degree polynomial, so the expression is improper. In the
third example, the numerator and denominator are both fourth-degree poly-
nomials, so the rational function is improper.
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Recalling polynomial division
Most math students learn polynomial division in Algebra II, demonstrate that
they know how to do it on their final exam, and then promptly forget it. And,
happily, they never need it again — except to pass the time at extremely dull
parties — until Calculus II.

It’s time to take polynomial division out of mothballs. In this section, I show
you everything you forgot to remember about polynomial division, both with
and without a remainder.

Polynomial division without a remainder
When you multiply two polynomials, you always get another polynomial.
For example:

(x3 + 3)(x2 – x) = x5 – x4 + 3x2 – 3x

Because division is the inverse of multiplication, the following equation
makes intuitive sense:

x
x x x x x x

3
3 3

3

5 4 2
2

+
- + - = -_ i

Polynomial division is a reliable method for dividing one polynomial by
another. It’s similar to long division, so you probably won’t have too much
difficulty understanding it even if you’ve never seen it.

The best way to show you how to do polynomial division is with an example.
Start with the example I’ve already outlined. Suppose that you want to divide
x5 – x4 + 3x2 – 3x by x3 + 3. Begin by setting up the problem as a typical long
division problem (notice that I fill with zeros for the x3 and constant terms):

x x x x x x3 0 3 3 03 5 4 3 2+ - + + - +g

Start by focusing on the highest degree exponent in both the divisor (x3) and
dividend (x5). Ask how many times x3 goes into x5 — that is, x5 ÷ x3 = ? Place
the answer in the quotient, and then multiply the result by the divisor as you
would with long division:

x x x x x x
x

x x

3 0 3 3 0

3

3 5 4 3 2

2

5 2

+ - + + - +

- +_ i

g
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As you can see, I multiply x 2 by x3 to get the result of x5 + 3x2, aligning this
result to keep terms of the same degree in similar columns. Next, subtract
and bring down the next term, just as you would with long division:

x x x x x x
x

x x

x x

3 0 3 3 0

3

3

3 5 4 3 2

2

5 2

4

+ - + + - +

- +

- -

_ i

g

Now, the cycle is complete, and you ask how many times x3 goes into –x4 —
that is, –x4 ÷ x3 = ? Place the answer in the quotient, and multiply the result
by the divisor:

x x x x x x
x x

x x

x x

x x

3 0 3 3 0

3

3

3

3 5 4 3 2

2

5 2

4

4

+ - + + - +
-

- +

- -

- - -

_

_

i

i

g

In this case, the subtraction that results works out evenly. Even if you bring
down the final zero, you have nothing left to divide, which shows the follow-
ing equality:

x
x x x x x x

3
3 3

3

5 4 2
2

+
- + - = -

Polynomial division with a remainder
Because polynomial division looks so much like long division, it makes sense
that polynomial division should, at times, leave a remainder. For example,
suppose that you want to divide x4 – 2x3 + 5x by 2x2 – 6:

x x x x x2 6 2 0 5 02 4 3 2- - + + +g

This time, I fill in two zero coefficients as needed. To begin, divide x4 by 2x2,
multiply through, and subtract:

x x x x x

x

x x

x x

2 6 2 0 5 0
2
1

3

2 3

2 4 3 2

2

4 2

3 2

- - + + +

- -

- +

_ i

g
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Don’t let the fractional coefficient deter you. Sometimes polynomial division
results in fractional coefficients.

Now bring down the next term (5x) to begin another cycle. Then, divide –2x3

by 2x2, multiply through, and subtract:

x x x x x

x x

x x

x x x

x x

x x

2 6 2 0 5 0
2
1

3

2 3 5

2 6

3

2 4 3 2

2

4 2

3 2

3

2

- - + + +

-

- -

- + +

- - +

-

_

_

i

i

g

Again, bring down the next term (0) and begin another cycle by dividing 3x2

by 2x2:

x x x x x

x x

x x

x x x

x x

x x

x

x

2 6 2 0 5 0
2
1

2
3

3

2 3 5

2 6

3 0

3 9

9

2 4 3 2

2

4 2

3 2

3

2

2

- - + + +

- +

- -

- + +

- - +

- +

- -

- +

_

_

_

i

i

i

g

As with long division, the remainder indicates a fractional amount left over:
the remainder divided by the divisor. So, when you have a remainder in poly-
nomial division, you write the answer by using the following formula:

Polynomial = Quotient + Divisor
Remainder

If you get confused deciding how to write out the answer, think of it as a
mixed number. For example, 7 ÷ 3 = 2 with a remainder of 1, which you write 

as 2 3
1 .

So, the polynomial division in this case provides the following equality:

x
x x x x x

x
x

2 6
2 5

2
1

2
3

2 6
9

2

4 3
2

2-
- + = - + +

-
- +
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Although this result may look more complicated than the fraction you started
with, you have made progress: You turned an improper rational expression
(where the degree of the numerator is greater than the degree of the denomi-
nator) into a sum that includes a proper rational expression. This is similar
to the practice in arithmetic of turning an improper fraction into a mixed
number.

Trying out an example
In this section, I walk you through an example that takes you through just
about everything in this chapter. Suppose that you want to integrate the fol-
lowing rational function:

x x
x x x dx

2 3
5 4

2

4 3

- +
- - +

^ _h i

This looks like a good candidate for partial fractions, as I show you earlier
in this chapter in “Case #2: Distinct quadratic factors.” But before you can
express it as partial fractions, you need to determine whether it’s proper or
improper. The degree of the numerator is 4 and (because the denominator is
the product of a linear and a quadratic) the degree of the entire denominator
is 3. Thus, this is an improper polynomial fraction (see “Distinguishing proper
and improper rational expressions” earlier in this chapter), so you can’t inte-
grate by parts.

However, you can use polynomial division to turn this improper polynomial
fraction into an expression that includes a proper polynomial fraction (I omit
these steps here, but I show you how earlier in this chapter in “Recalling
polynomial division.”):

x x
x x x x

x x
x x

2 3
5 4 1

2 3
2 10

2

4 3

2

2

- +
- - + = + +

- +
- - +

^ _ ^ _h i h i

As you can see, the first two terms of this expression are simple to integrate
(don’t forget about them!). To set up the remaining term for integration, use
partial fractions:

x x
x x

x
A

x
Bx C

2 3
2 10

2 32

2

2
- +

- - + =
-

+
+
+

^ _h i

Get a common denominator on the right side of the equation:

x x
x x

x x
A x Bx C x

2 3
2 10

2 3
3 2

2

2

2

2

- +
- - + =

- +

+ + + -

^ _ ^ _

_ ^ ^

h i h i

i h h
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Now multiply both sides of the equation by this denominator:

–x2 – 2x + 10 = A(x2 + 3) + (Bx + C)(x – 2)

Notice that (x – 2) is a linear factor, so you can use the root of this factor to
find the value of A. To find this value, let x = 2 and solve for A:

–(22) – 2(2) + 10 = A(22 + 3) + (B2 + C)(2 – 2)

2 = 7A

A = 7
2

Substitute this value into the equation:

–x2 – 2x + 10 = 7
2 (x2 + 3) + (Bx + C)(x – 2)

At this point, to find the values of B and C, you need to split the equation into
a system of two equations (as I show you earlier in “Working systematically
with a system of equations”):

x x x Bx Cx Bx C

B x B C x C

2 10 7
2

7
6 2 2

7
2 1 2 2 7

6 2 10 0

2 2 2

2

- - + = + + + - -

+ + + - + + + - - =c ^ cm h m

This splits into three equations:

7
2 + B + 1 = 0

–2B + C + 2 = 0

7
6 – 2C – 10 = 0

The first and the third equations show you that B = 7
9- and C = 7

32- . Now 
you can plug the values of A, B, and C back into the sum of partial fractions:

x x
x

7 2
2

7 3
9 32

2-
+

+
- -

^ _h i

Make sure that you remember to add in the two terms (x + 1) that you left
behind just after you finished your polynomial division:

x x
x x x dx x

x x
x dx

2 3
5 4 1

7 2
2

7 3
9 32

2

4 3

2- +
- - + = + +

-
+

+
-# #

^ _ ^ _h i h i

R

T

S
SS

V

X

W
WW

Thus, you can rewrite the original integral as the sum of five separate integrals:

x dx dx x dx
x

x dx
x

dx7
2

2
1

7
9

3 7
32

3
1

2 2+ +
-

-
+

-
+

# # # ##
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You can solve the first two of these integrals by looking at them, and the next
two by variable substitution (see Chapter 5). The last is done by using the fol-
lowing rule:

arctan
x n

dx n n
x C1 1

2 2+
= +#

Here’s the solution so that you can work the last steps yourself:

ln ln arctanx x x x x C2
1

7
2 2 14

9 3
7 3
32

3
2 2+ + - - + - +
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